Genetic polymorphisms in centrobin and Nek2 are associated with breast cancer susceptibility in a Chinese Han population
详细信息    查看全文
  • 作者:Hui Wang (1)
    Yun-Tao Xie (2)
    Ji-Yuan Han (1)
    Yuan Ruan (1)
    Ai-Ping Song (1)
    Li-Yuan Zheng (1)
    Wei-Zao Zhang (1)
    Constantin Sajdik (3)
    Yan Li (1)
    Xin-Xia Tian (1) tianxinxia@yahoo.com
    Wei-Gang Fang (1) wgfang@bjmu.edu.cn
  • 关键词:Centrobin Nek2 – ; Single nucleotide polymorphism – ; Haplotype – ; Breast cancer
  • 刊名:Breast Cancer Research and Treatment
  • 出版年:2012
  • 出版时间:November 2012
  • 年:2012
  • 卷:136
  • 期:1
  • 页码:241-251
  • 全文大小:297.4 KB
  • 参考文献:1. Dapic V, Carvalho MA, Monteiro AN (2005) Breast cancer susceptibility and the DNA damage response. Cancer Control 12:127–136
    2. Steiner E, Klubert D, Knutson D (2008) Assessing breast cancer risk in women. Am Fam Phys 78:1361–1366
    3. Pike MC, Spicer DV, Dahmoush L, Press MF (1993) Estrogens, progesterones, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev 15:17–35
    4. Antoniou AC, Easton DF (2006) Models of genetic susceptibility to breast cancer. Oncogene 25:5898–5905
    5. Kilfoy BA, Zhang Y, Shu XO, Gao YT, Ji BT, Yang G, Li HL, Rothman N, Chow WH, Zheng W (2008) Family history of malignancies and risk of breast cancer: prospective data from the Shanghai women’s health study. Cancer Causes Control 19:1139–1145
    6. Cleary MP, Maihle NJ (1997) The role of body mass index in the relative risk of developing premenopausal versus postmenopausal breast cancer. Proc Soc Exp Biol Med 216:28–43
    7. Haakinson DJ, Leeds SG, Dueck AC, Gray RJ, Wasif N, Stucky CC, Northfelt DW, Apsey HA, Pockaj B (2012) The impact of obesity on breast cancer: a retrospective review. Ann Surg Oncol 105(6):586–590. doi:10.1245/s10434-012-2320-8
    8. Schork NJ, Murray SS, Frazer KA, Topol EJ (2009) Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev 19:212–219
    9. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA (2004) Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet 74:106–120
    10. Zhao H, Pfeiffer R, Gail MH (2003) Haplotype analysis in population genetics and association studies. Pharmacogenomics 4:171–178
    11. Anderhub SJ, Kramer A, Maier B (2012) Centrosome amplification in tumorigenesis. Cancer Lett 322(1):8–17. doi:10.1016/j.canlet.2012.02.006
    12. Chan JY (2011) A clinical overview of centrosome amplification in human cancers. Int J Biol Sci 7:1122–1144
    13. Nigg EA (2002) Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2:815–825
    14. D’Assoro AB, Barrett SL, Folk C, Negron VC, Boeneman K, Busby R, Whitehead C, Stivala F, Lingle WL, Salisbury JL (2002) Amplified centrosomes in breast cancer: a potential indicator of tumor aggressiveness. Breast Cancer Res Treat 75:25–34
    15. Goepfert TM, Adigun YE, Zhong L, Gay J, Medina D, Brinkley WR (2002) Centrosome amplification and overexpression of aurora A are early events in rat mammary carcinogenesis. Cancer Res 62:4115–4122
    16. Guo HQ, Gao M, Ma J, Xiao T, Zhao LL, Gao Y, Pan QJ (2007) Analysis of the cellular centrosome in fine-needle aspirations of the breast. Breast Cancer Res 9:R48
    17. Kronenwett U, Huwendiek S, Castro J, Ried T, Auer G (2005) Characterisation of breast fine-needle aspiration biopsies by centrosome aberrations and genomic instability. Br J Cancer 92:389–395
    18. Schneeweiss A, Sinn HP, Ehemann V, Khbeis T, Neben K, Krause U, Ho AD, Bastert G, Kramer A (2003) Centrosomal aberrations in primary invasive breast cancer are associated with nodal status and hormone receptor expression. Int J Cancer 107:346–352
    19. Lingle WL, Lutz WH, Ingle JN, Maihle NJ, Salisbury JL (1998) Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc Natl Acad Sci USA 95:2950–2955
    20. Ruan Y, Song AP, Wang H, Xie YT, Han JY, Sajdik C, Tian XX, Fang WG (2011) Genetic polymorphisms in AURKA and BRCA1 are associated with breast cancer susceptibility in a Chinese Han population. J Pathol 225:535–543
    21. Zou C, Li J, Bai Y, Gunning WT, Wazer DE, Band V, Gao Q (2005) Centrobin: a novel daughter centriole-associated protein that is required for centriole duplication. J Cell Biol 171:437–445
    22. Jeong Y, Lee J, Kim K, Yoo JC, Rhee K (2007) Characterization of NIP2/centrobin, a novel substrate of Nek2, and its potential role in microtubule stabilization. J Cell Sci 120:2106–2116
    23. Sonn S, Jeong Y, Rhee K (2009) Nip2/centrobin may be a substrate of Nek2 that is required for proper spindle assembly during mitosis in early mouse embryos. Mol Reprod Dev 76:587–592
    24. Sonn S, Oh GT, Rhee K (2011) Nek2 and its substrate, centrobin/Nip2, are required for proper meiotic spindle formation of the mouse oocytes. Zygote 19:15–20
    25. Jeffery JM, Urquhart AJ, Subramaniam VN, Parton RG, Khanna KK (2010) Centrobin regulates the assembly of functional mitotic spindles. Oncogene 29:2649–2658
    26. Fry AM (2002) The Nek2 protein kinase: a novel regulator of centrosome structure. Oncogene 21:6184–6194
    27. Du J, Cai X, Yao J, Ding X, Wu Q, Pei S, Jiang K, Zhang Y, Wang W, Shi Y, Lai Y, Shen J, Teng M, Huang H, Fei Q, Reddy ES, Zhu J, Jin C, Yao X (2008) The mitotic checkpoint kinase NEK2A regulates kinetochore microtubule attachment stability. Oncogene 27:4107–4114
    28. Fu G, Ding X, Yuan K, Aikhionbare F, Yao J, Cai X, Jiang K, Yao X (2007) Phosphorylation of human Sgo1 by NEK2A is essential for chromosome congression in mitosis. Cell Res 17:608–618
    29. Twomey C, Wattam SL, Pillai MR, Rapley J, Baxter JE, Fry AM (2004) Nek2B stimulates zygotic centrosome assembly in Xenopus laevis in a kinase-independent manner. Dev Biol 265:384–398
    30. Uto K, Sagata N (2000) Nek2B, a novel maternal form of Nek2 kinase, is essential for the assembly or maintenance of centrosomes in early Xenopus embryos. EMBO J 19:1816–1826
    31. Faragher AJ, Fry AM (2003) Nek2A kinase stimulates centrosome disjunction and is required for formation of bipolar mitotic spindles. Mol Biol Cell 14:2876–2889
    32. Hayward DG, Clarke RB, Faragher AJ, Pillai MR, Hagan IM, Fry AM (2004) The centrosomal kinase Nek2 displays elevated levels of protein expression in human breast cancer. Cancer Res 64:7370–7376
    33. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229
    34. Hochberg Y YB (1995) Controlling the false discovery rate a practical and powerful approach to multiple testing. JR Stat Soc B 57:289–300
    35. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265
    36. Liang J, Chen P, Hu Z, Shen H, Wang F, Chen L, Li M, Tang J, Wang H, Shen H (2010) Genetic variants in trinucleotide repeat-containing 9 (TNRC9) are associated with risk of estrogen receptor positive breast cancer in a Chinese population. Breast Cancer Res Treat 124:237–241
    37. Olson JE, Wang X, Pankratz VS, Fredericksen ZS, Vachon CM, Vierkant RA, Cerhan JR, Couch FJ (2011) Centrosome-related genes, genetic variation, and risk of breast cancer. Breast Cancer Res Treat 125:221–228
    38. Brendle A, Brandt A, Johansson R, Enquist K, Hallmans G, Hemminki K, Lenner P, Forsti A (2009) Single nucleotide polymorphisms in chromosomal instability genes and risk and clinical outcome of breast cancer: a Swedish prospective case–control study. Eur J Cancer 45:435–442
    39. Zeng X, Shaikh FY, Harrison MK, Adon AM, Trimboli AJ, Carroll KA, Sharma N, Timmers C, Chodosh LA, Leone G, Saavedra HI (2010) The Ras oncogene signals centrosome amplification in mammary epithelial cells through cyclin D1/Cdk4 and Nek2. Oncogene 29:5103–5112
  • 作者单位:1. Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Sino-Austrian Center for Biomarker Discovery, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China2. Breast Center, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, 100142 China3. Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 52a, 6020 Innsbruck, Austria
  • ISSN:1573-7217
文摘
Centrosome aberrations have been suggested to cause chromosomal instability and aneuploidy, and eventually promote cancer development. The Centrobin and Nek2 proteins interact with each other and both are involved in centrosome duplication and chromosome segregation. This study aimed to investigate whether genetic polymorphisms in these two genes may affect breast cancer susceptibility in Chinese Han population using a haplotype-based analysis. Five single nucleotide polymorphisms (SNPs) in centrobin and four SNPs in Nek2 were genotyped in 1,215 cases of infiltrating ductal breast cancer and 1,215 age-matched cancer-free controls from Chinese Han population. The results showed that CATCG haplotype of centrobin was strongly associated with decreased breast cancer risk (adjusted OR = 0.14, 95 % CI = 0.09–0.22), which was mainly driven by the C allele of SNP rs11650083 (A>C, located in exon 12, resulting in Pro578Gln). None of the individual SNPs in Nek2 was associated with breast cancer risk. However, haplotype GTAT of Nek2 was associated with increased risk of breast cancer (adjusted OR = 1.56, 95 % CI = 1.18–2.06) and its risk was significantly elevated among women with both family history of cancer and a longer menarche-first full-term pregnancy (FFTP) interval (>11 years) (adjusted OR = 5.31, 95 % CI = 1.97–14.32). Furthermore, women harboring both at-risk haplotype GTAT of Nek2 and protective haplotype CATCG of centrobin were linked with decreased breast cancer risk, suggesting that the association between genetic variants of Nek2 and increased breast cancer risk was modified by genetic variants of centrobin. Our results indicate that genetic polymorphisms of centrobin and Nek2 are related to breast cancer susceptibility in Chinese Han women.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700