Interpolation properties of generalized plane waves
详细信息    查看全文
  • 作者:Lise-Marie Imbert-Gérard
  • 关键词:65D05 ; 65N99
  • 刊名:Numerische Mathematik
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:131
  • 期:4
  • 页码:683-711
  • 全文大小:847 KB
  • 参考文献:1.Babuka, I., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the Helmholtz’s equation considering high wave numbers? SIAM Rev. 42, 451-84 (2000)MathSciNet
    2.Betcke, T.: Numerical computation of eigenfunctions of planar regions, Thesis (2005)
    3.Betcke, T., Phillips, J.: Approximation by dominant wave directions in plane wave methods. (unpublished)
    4.Buffa, A., Monk, P.: Error estimates for the ultra weak variational formulation of the Helmholtz equation. ESAIM Math. Model. Numer. Anal. 42, 925-40 (2008)MATH MathSciNet CrossRef
    5.Cessenat, O., Després, B.: Application of an ultra weak variational formulation of elliptic PDEs to the two dimensional Helmholtz problem. SIAM J. Numer. Anal. 55(1), 255-99 (1998)CrossRef
    6.Ciarlet, P.G.: The finite element method for elliptic problems. In: Studies in Mathematics and its Applications, vol. 4. North-Holland Publishing Co., Amsterdam (1978)
    7.Constantine, G.M., Savits, T.H.: A multivariate Faà di Bruno formula with applications. Trans. Am. Math. Soc. 348(2), 503-20 (1996)MATH MathSciNet CrossRef
    8.Craik, A.D.D.: Prehistory of Faà di Bruno’s formula. Am. Math. Mon. 112(2), 119-30 (2005)MATH MathSciNet CrossRef
    9.Demailly, J.P.: Analyse numérique et équations différentielles ( Nelle édition) Grenoble Sciences, EDP Sciences, ISBN 9782759801121 (2012)
    10.Després, B.: Sur une formulation variationnelle de type ultra-faible. C. R. Acad. Sci. Paris Sér. I Math. 318(10), 939-44 (1994)MATH
    11.Farhat, C., Harari, I., Franca, L.: The discontinuous enrichment method. Comput. Methods Appl. Mech. Eng. 190, 6455-479 (2001)MATH MathSciNet CrossRef
    12.Gittelson, C.J., Hiptmair, R., Perugia, I.: Plane wave discontinuous Galerkin methods: analysis of the h-version. ESAIM Math. Model. Numer. Anal. 43, 297-31 (2009)MATH MathSciNet CrossRef
    13.Hardy, M.: Combinatorics of partial derivatives. Electron. J. Comb. 13(1), 13 (2006)
    14.Henrici, P.: A survey of I. N. Vekua’s theory of elliptic partial differential equations with analytic coefficients. Z. Angew. Math. Phys. 8, 169-03 (1957)MATH MathSciNet CrossRef
    15.Hiptmair, R.: Low frequency stable Maxwell formulations. Oberwolfach reports (2008)
    16.Hiptmair, R., Moiola, A., Perugia, I.: Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version. SIAM J. Numer. Anal. 49(1), 264-84 (2011)MATH MathSciNet CrossRef
    17.Hiptmair, R., Moiola, A., Perugia, I.: Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations. Math. Comput. 82(281), 247-68 (2013)MATH MathSciNet CrossRef
    18.Hiptmair, R., Moiola, A., Perugia, I.: Plane wave discontinuous Galerkin methods: exponential convergence of the hp-version. SAM, ETH Züurich, Switzerland, Report 2013-1 (Submitted to Found. Comput. Math) (2013)
    19.Huttunen, T., Malinen, M., Monk, P.: Solving Maxwell’s equations using the ultra weak variational formulation. J. Comput. Phys. 223(2), 731-58 (2007)MATH MathSciNet CrossRef
    20.Huttunen, T., Monk, P., Kaipio, J.P.: Computational aspects of the ultra-weak variational formulation. J. Comput. Phys. 182(1), 27-6 (2002)MATH MathSciNet CrossRef
    21.Imbert-Gérard, L.-M., Després, B.: A generalized plane wave numerical method for smooth non constant coefficients, Tech. report R11034, LJLL-UPMC (2011)
    22.Imbert-Gerard, L.-M., Despres, B.: A generalized plane-wave numerical method for smooth nonconstant coefficients. IMA J. Numer. Anal. (2013). doi:10.-093/?imanum/?drt030
    23.Imbert-Gerard, L.-M.: Mathematical and numerical problems of some wave phenomena appearing in magnetic plasmas. Ph.D. thesis, oai:tel.archives-ouvertes.fr:tel-00870184 (2013)
    24.Ma, T.W.: Higher chain formula proved by combinatorics. Electron. J. Comb. 16(1), 7 (2009). (Note 21)
    25.Melenk, J.: Operator adapted spectral element methods I: harmonic and generalized harmonic polynomials. Numerische Mathematik 84, 35-9 (1999)MATH MathSciNet CrossRef
    26.Moiola, A.: Trefftz-discontinuous Galerkin methods for time-harmonic wave problems. Diss. no. 19957, ETH Zürich, 2011 (2012)
    27.Moiola, A., Spence, E.A.: Is the Helmholtz equation really sign-indefinite. Siam Review 56(2):274-12 (2014)
    28.Moiola, A., Hiptmair, R., Perugia, I.: Vekua theory for the Helmholtz operator. Z. Angew. Math. Phys. 62(5), 779-07 (2011)MATH MathSciNet CrossRef
    29.Pluymers, B., Hal, B., Vandepitte, D., Desmet, W.: Trefftz-based methods for time-harmonic acoustics. Arch. Comput. Methods Eng. 14(4), 343-81 (2007)MATH MathSciNet CrossRef
    30.Schoenberg, I.J.: On Hermite-Birkhoff interpolation. J. Math. Anal. Appl. 16(3), 538-43 (1966)MATH MathSciNet CrossRef
    31.Tezaur, R.: Discontinuous enrichment method for smoothly variable wavenumber medium-frequency Helmholtz problems. In: Proceedings of the 11th International Conference on Mathematical and Numerical Aspects of Waves, Tunis, Tunisie, pp. 353-54 (2013)
    32.Trefftz, E.:
  • 作者单位:Lise-Marie Imbert-Gérard (1)

    1. Courant Institute of Mathematical Sciences, NYU, 251 Mercer Street, New York, NY, USA
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Numerical Analysis
    Mathematics
    Mathematical and Computational Physics
    Mathematical Methods in Physics
    Numerical and Computational Methods
    Applied Mathematics and Computational Methods of Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0945-3245
文摘
This paper is aimed at developing new shape functions adapted to the scalar wave equation with smooth (possibly vanishing) coefficients and investigates the numerical analysis of their interpolation properties. The interpolation is local, but high order convergence is shown with respect to the size of the domain considered. The new basis functions are then implemented in a numerical method to solve a scalar wave equation problem with a mixed boundary condition. The main theoretical result states that any given order of approximation can be achieved by an appropriate choice of parameters for the design of the shape functions. The convergence is studied with respect to the size of the domain, which is referred to in the literature as \(h\)-convergence. Mathematics Subject Classification 65D05 65N99

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700