Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications
详细信息    查看全文
  • 作者:Ricardo H. Nochetto ; Enrique Otárola ; Abner J. Salgado
  • 关键词:35J70 ; 35J75 ; 65D05 ; 65N30 ; 65N12
  • 刊名:Numerische Mathematik
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:132
  • 期:1
  • 页码:85-130
  • 全文大小:871 KB
  • 参考文献:1.Acosta, G.: Lagrange and average interpolation over 3D anisotropic elements. J. Comput. Appl. Math. 135(1), 91–109 (2001)MATH MathSciNet CrossRef
    2.Agler, J., McCarthy, J.E.: Pick interpolation and Hilbert function spaces. In: Graduate Studies in Mathematics, vol. 44. American Mathematical Society, Providence (2002)
    3.Agnelli, J.P., Garau, E.M., Morin, P.: A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces. ESAIM: Math. Modell. Numer. Anal. 48(11), 1557–1581 (2014)
    4.Apel, T.: Interpolation of non-smooth functions on anisotropic finite element meshes. M2AN. Math. Model. Numer. Anal. 33(6), 1149–1185 (1999)MATH MathSciNet CrossRef
    5.Araya, R., Behrens, E., Rodríguez, R.: An adaptive stabilized finite element scheme for a water quality model. Comput. Methods Appl. Mech. Eng. 196(29–30), 2800–2812 (2007)MATH CrossRef
    6.Arroyo, D., Bespalov, A., Heuer, N.: On the finite element method for elliptic problems with degenerate and singular coefficients. Math. Comp. 76(258), 509–537 (2007)MATH MathSciNet CrossRef
    7.Babuška, I.: Error-bounds for finite element method. Numer. Math. 16, 322–333 (1970/1971)
    8.Babuška, I., Aziz, A.K.: Survey lectures on the mathematical foundations of the finite element method. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972), pp. 1–359. Academic Press, New York. With the collaboration of G. Fix and R. B. Kellogg (1972)
    9.Bartels, S., Nochetto, R.H., Salgado, A.J.: A total variation diminishing interpolation operator and applications. Math. Comput. (2014, accepted)
    10.Belhachmi, Z., Bernardi, Ch., Deparis, S.: Weighted Clément operator and application to the finite element discretization of the axisymmetric Stokes problem. Numer. Math. 105(2), 217–247 (2006)MATH MathSciNet CrossRef
    11.Bernardi, Ch., Canuto, C., Maday, Y.: Generalized inf-sup conditions for Chebyshev spectral approximation of the Stokes problem. SIAM J. Numer. Anal. 25(6), 1237–1271 (1988)MATH MathSciNet CrossRef
    12.Besov, O.V., Il’in, V.P., Nikol’skiĭ, S.M.: Integralnye predstavleniya funktsii i teoremy vlozheniya. 2nd ed. Fizmatlit “Nauka”, Moscow (1996)
    13.Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, vol. 15. 3rd ed. Springer, New York (2008)
    14.Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians ii: existence, uniqueness and qualitative properties of solutions. Trans. Amer. Math. Soc. (2014, To appear)
    15.Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)MATH MathSciNet CrossRef
    16.Capella, A., Dávila, J., Dupaigne, L., Sire, Y.: Regularity of radial extremal solutions for some non-local semilinear equations. Commun. Partial Differ. Equ. 36(8), 1353–1384 (2011)MATH CrossRef
    17.Casas, E.: \(L^2\) estimates for the finite element method for the Dirichlet problem with singular data. Numer. Math. 47(4), 627–632 (1985)MATH MathSciNet CrossRef
    18.Cavalheiro, A.C.: A theorem on global regularity for solutions of degenerate elliptic equations. Commun. Math. Anal. 11(2), 112–123 (2011)MATH MathSciNet
    19.Chanillo, S., Wheeden, R.L.: Weighted Poincaré and Sobolev inequalities and estimates for weighted Peano maximal functions. Am. J. Math. 107(5), 1191–1226 (1985)MATH MathSciNet CrossRef
    20.Chen, L., Nochetto, R.H., Otárola, E., Salgado, A.J.: Multilevel methods for nonuniformly elliptic operators. arXiv:​1403.​4278 . (2014)
    21.Chen, Y.: Regularity of solutions to the Dirichlet problem for degenerate elliptic equation. Chin. Ann. Math. Ser. B 24(4), 529–540 (2003)MATH CrossRef
    22.Chua, S.-K.: Extension theorems on weighted Sobolev spaces. Indiana Univ. Math. J. 41(4), 1027–1076 (1992)MATH MathSciNet CrossRef
    23.Ciarlet, P.G.: The finite element method for elliptic problems. In: Classics in Applied Mathematics, vol. 40. SIAM, Philadelphia (2002)
    24.Clément, P.: Approximation by finite element functions using local regularization. RAIRO Analyse Numérique 9(R-2), 77–84 (1975)
    25.D’Angelo, C.: Finite element approximation of elliptic problems with Dirac measure terms in weighted spaces: applications to one- and three-dimensional coupled problems. SIAM J. Numer. Anal. 50(1), 194–215 (2012)MATH MathSciNet CrossRef
    26.Diening, L., Ružička, M.: Interpolation operators in Orlicz–Sobolev spaces. Numer. Math. 107(1), 107–129 (2007)MATH MathSciNet CrossRef
    27.Duoandikoetxea, J.: Fourier analysis. In: Graduate Studies in Mathematics, vol. 29. American Mathematical Society, Providence (2001). Translated and revised from the 1995 Spanish original by David Cruz-Uribe
    28.Dupont, T., Scott, L.R.: Polynomial approximation of functions in Sobolev spaces. Math. Comp. 34(150), 441–463 (1980)MATH MathSciNet CrossRef
    29.Durán, R.G.: On polynomial approximation in Sobolev spaces. SIAM J. Numer. Anal. 20(5), 985–988 (1983)MATH MathSciNet CrossRef
    30.Durán, R.G.: Quasi-optimal estimates for finite element approximations using Orlicz norms. Math. Comp. 49(179), 17–23 (1987)MATH MathSciNet CrossRef
    31.Durán, R.G., Lombardi, A.L.: Error estimates on anisotropic \(Q_1\) elements for functions in weighted Sobolev spaces. Math. Comput. 74(252), 1679–1706 (2005, electronic)
    32.Durán, R.G., Lombardi, A.L., Prieto, M.I.: Superconvergence for finite element approximation of a convection–diffusion equation using graded meshes. IMA J. Numer. Anal. 32(2), 511–533 (2012)MATH MathSciNet CrossRef
    33.Durán, R.G., López, F.: García. Solutions of the divergence and Korn inequalities on domains with an external cusp. Ann. Acad. Sci. Fenn. Math. 35(2), 421–438 (2010)MATH MathSciNet CrossRef
    34.Eriksson, K.: Improved accuracy by adapted mesh-refinements in the finite element method. Math. Comput. 44(170), 321–343 (1985)MATH MathSciNet CrossRef
    35.Ern, A., Guermond, J.-L.: Theory and practice of finite elements. In: Applied Mathematical Sciences, vol. 159. Springer, New York (2004)
    36.Fabes, E.B., Kenig, C.E., Serapioni, R.P.: The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equ. 7(1), 77–116 (1982)MATH MathSciNet CrossRef
    37.Figueroa, L.E., Süli, E.: Greedy approximation of high-dimensional Ornstein–Uhlenbeck operators. Found. Comput. Math. 12(5), 573–623 (2012)MATH MathSciNet CrossRef
    38.Franchi, B., Gutiérrez, C.E., Wheeden, R.L.: Two-weight Sobolev–Poincaré inequalities and Harnack inequality for a class of degenerate elliptic operators. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 5(2), 167–175 (1994)
    39.French, D.A.: The finite element method for a degenerate elliptic equation. SIAM J. Numer. Anal. 24(4), 788–815 (1987)MATH MathSciNet CrossRef
    40.Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition
    41.Gol’dshtein, V., Ukhlov, A.: Weighted Sobolev spaces and embedding theorems. Trans. Am. Math. Soc. 361(7), 3829–3850 (2009)MATH MathSciNet CrossRef
    42.Gopalakrishnan, J., Pasciak, J.E.: The convergence of V-cycle multigrid algorithms for axisymmetric Laplace and Maxwell equations. Math. Comput. 75(256), 1697–1719 (2006)MATH MathSciNet CrossRef
    43.Griebel, M., Scherer, K., Schweitzer, A.: Robust norm equivalencies for diffusion problems. Math. Comput. 76(259), 1141–1161 (2007, electronic)
    44.Grisvard, P.: Elliptic problems in nonsmooth domains. In: Monographs and Studies in Mathematics, vol. 24. Pitman (Advanced Publishing Program), Boston (1985)
    45.Gurka, P., Opic, B.: Continuous and compact imbeddings of weighted Sobolev spaces. I. Czechoslovak Math. J. 38(113)(4), 730–744 (1988)
    46.Hajłasz, P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5(4), 403–415 (1996)MATH MathSciNet
    47.Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145(688), x+101 (2000)
    48.Haroske, D.D., Skrzypczak, L.: Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights. I. Rev. Mat. Complut. 21(1), 135–177 (2008)MATH MathSciNet
    49.Haroske, D.D., Skrzypczak, L.: Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights, II. General weights. Ann. Acad. Sci. Fenn. Math. 36(1), 111–138 (2011)MATH MathSciNet CrossRef
    50.Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear potential theory of degenerate elliptic equations. In: Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford Science Publications, New York (1993)
    51.Kufner, A.: Weighted Sobolev Spaces. A Wiley-Interscience Publication, Wiley, New York (1985)MATH
    52.Kufner, A., Opic, B.: How to define reasonably weighted Sobolev spaces. Comment. Math. Univ. Carolin. 25(3), 537–554 (1984)MATH MathSciNet
    53.Kufner, A., Sändig, A.-M.: Some applications of weighted Sobolev spaces. In: Teubner Texts in Mathematics, vol. 100. BSB B. G. Teubner Verlagsgesellschaft, Leipzig (1987)
    54.Lai, M.-J., Schumaker, L.L.: Spline functions on triangulations. In: Encyclopedia of Mathematics and its Applications, vol. 110. Cambridge University Press, Cambridge (2007)
    55.Landkof, N.S.: Foundations of Modern Potential Theory. Springer, New York (1972). Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band, 180
    56.Li, H.: A-priori analysis and the finite element method for a class of degenerate elliptic equations. Math. Comput. 78(266), 713–737 (2009)MATH CrossRef
    57.Mamedov, F.I., Amanov, R.A.: On some nonuniform cases of weighted Sobolev and Poincaré inequalities. Algebra i Analiz 20(3), 163–186 (2008). (in Russian)MathSciNet
    58.Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 165, 207–226 (1972)MATH MathSciNet CrossRef
    59.Nikol’skiĭ, S.M.: Approximation of functions of several variables and imbedding theorems. Springer, New York (1975)CrossRef
    60.Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 1–59. doi:10.​1007/​s10208-014-9208-x (2014)
    61.Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: DeVore, R., Kunoth, A. (eds.) Multiscale. Nonlinear and Adaptive Approximation, pp. 409–542. Springer, Berlin (2009)
    62.Pérez, C.: Two weighted norm inequalities for Riesz potentials and uniform \(L^p\) -weighted Sobolev inequalities. Indiana Univ. Math. J. 39(1), 31–44 (1990)MATH MathSciNet CrossRef
    63.Schatz, A.H., Wahlbin, L.B.: Interior maximum norm estimates for finite element methods. Math. Comput. 31(138), 414–442 (1977)MATH MathSciNet CrossRef
    64.Scott, L.R.: Finite element convergence for singular data. Numer. Math. 21, 317–327 (1973/74)
    65.Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)MATH MathSciNet CrossRef
    66.Seidman, T.I., Gobbert, M.K., Trott, D.W., Kružík, M.: Finite element approximation for time-dependent diffusion with measure-valued source. Numer. Math. 122(4), 709–723 (2012)MATH MathSciNet CrossRef
    67.Sobolev, S.L.: On a theorem of functional analysis. Mat. Sb 4(46), 471–497 (1938)MATH
    68.Sobolev, S.L.: Nekotorye primeneniya funkcional’ nogo analiza v matematičeskoĭ fizike. Izdat. Leningrad. Gos. Univ, Leningrad (1950)
    69.Stinga, P.R., Torrea, J.L.: Extension problem and Harnack’s inequality for some fractional operators. Commun. Partial Differ. Equ. 35(11), 2092–2122 (2010)MATH MathSciNet CrossRef
    70.Turesson, B.O.: Nonlinear potential theory and weighted Sobolev spaces. In: Lecture Notes in Mathematics, vol. 1736. Springer, Berlin (2000)
    71.Ziemer, W.P.: Weakly differentiable functions. In: Graduate Texts in Mathematics, vol. 120. Springer, New York (1989)
  • 作者单位:Ricardo H. Nochetto (1)
    Enrique Otárola (2) (3)
    Abner J. Salgado (4)

    1. Department of Mathematics, Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
    2. Department of Mathematics, University of Maryland, College Park, MD, 20742, USA
    3. Department of Mathematical Sciences, George Mason University, Fairfax, VA, 22030, USA
    4. Department of Mathematics, University of Tennessee, Knoxville, TN, 37996, USA
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Numerical Analysis
    Mathematics
    Mathematical and Computational Physics
    Mathematical Methods in Physics
    Numerical and Computational Methods
    Applied Mathematics and Computational Methods of Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0945-3245
文摘
We develop a constructive piecewise polynomial approximation theory in weighted Sobolev spaces with Muckenhoupt weights for any polynomial degree. The main ingredients to derive optimal error estimates for an averaged Taylor polynomial are a suitable weighted Poincaré inequality, a cancellation property and a simple induction argument. We also construct a quasi-interpolation operator, built on local averages over stars, which is well defined for functions in \(L^1\). We derive optimal error estimates for any polynomial degree on simplicial shape regular meshes. On rectangular meshes, these estimates are valid under the condition that neighboring elements have comparable size, which yields optimal anisotropic error estimates over \(n\)-rectangular domains. The interpolation theory extends to cases when the error and function regularity require different weights. We conclude with three applications: nonuniform elliptic boundary value problems, elliptic problems with singular sources, and fractional powers of elliptic operators. Mathematics Subject Classification 35J70 35J75 65D05 65N30 65N12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700