The role of spatial organization of cells in erythropoiesis
详细信息    查看全文
  • 作者:N. Eymard (1)
    N. Bessonov (2)
    O. Gandrillon (3) (4)
    M. J. Koury (5)
    V. Volpert (1) (4) (6)

    1. Institut Camille Jordan
    ; UMR 5208 CNRS ; University Lyon 1 ; Villeurbanne ; France
    2. Institute of Mechanical Engineering Problems
    ; 199178聽 ; Saint Petersburg ; Russia
    3. Centre de G茅n茅tique et de Physiologie Mol茅culaire et Cellulaire
    ; CNRS UMR 5534 ; University Lyon 1 ; Villeurbanne聽 ; 69622 ; France
    4. INRIA Team Dracula
    ; INRIA Antenne Lyon la Doua ; Villeurbanne ; 69603聽 ; France
    5. Medicine
    ; Veterans Affairs Tennessee Valley Healthcare System and Vanderbilt University Medical Center ; Nashville ; TN ; USA
    6. European Institute of Systems Biology and Medicine
    ; Lyon聽 ; 69007 ; France
  • 关键词:Erythropoiesis ; Erythroblastic island ; Hybrid model ; Comparison with experiments ; 92C37 ; 68U20
  • 刊名:Journal of Mathematical Biology
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:70
  • 期:1-2
  • 页码:71-97
  • 全文大小:1,639 KB
  • 参考文献:1. Papayannopoulou T, Migliaccio AR, Abkowitz JL, D鈥橝ndrea AD (2009) Biology of erythropoiesis, erythroid differentiation, and maturation. In: Hoffman R, Benz EJ Jr, Shattil SJ, Furie B, Silberstein LE, McGlave P, Heslop HE (eds) Hematology: basic principles and practice, 5th edn. Churchill Livingstone, Elsevier Inc, Philadelphia, pp 276鈥?94
    2. Chasis JA, Mohandas N (2008) Erythroblastic islands: niches for erythropoiesis. Blood 112:470鈥?78 CrossRef
    3. Stephenson JR, Axelrad AA, McLeod DL, Shreeve MM (1971) Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc Natl Acad Sci U S A 68:1542鈥?546 CrossRef
    4. Gregory CJ, Eaves AC (1977) Human marrow cells capable of erythropoietic differentiation in vitro: definition of three erythroid colony responses. Blood 49:855鈥?64
    5. Nijhof W, Wierenga PK (1983) Isolation and characterization of the erythroid progenitor cell: CFU-E. J Cell Biol 96:386鈥?92 CrossRef
    6. Sawada K, Krantz SB, Kans JS, Dessypris EN, Sawyer S, Glick AD, Civin CI (1987) Purification of human erythroid colony-forming units and demonstration of specific binding of erythropoietin. J Clin Invest 80:357鈥?66 CrossRef
    7. Socolovsky M, Nam H, Fleming MD, Haase VH, Brugnara C, Lodish HF (2001) Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early erythroblasts. Blood 98:3261鈥?273 CrossRef
    8. Chen K, Liu J, Heck S, Chasis JA, An X, Mohandas N (2009) Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc Natl Acad Sci U S A 106:17413鈥?74138 CrossRef
    9. De Maria R, Testa U, Luchetti L, Zeuner A, Stassi G, Pelosi E, Riccioni R, Felli N, Samoggia P, Peschle C (1999) Apoptotic role of Fas/Fas ligand system in the regulation of erythropoiesis. Blood 93:796鈥?03
    10. Liu Y, Pop R, Sadegh C, Brugnara C, Haase VH, Socolovsky M (2006) Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. Blood 108:123鈥?33 CrossRef
    11. Dai CH, Krantz SB, Zsebo KM (1991) Human burst-forming units-erythroid need direct interaction with stem cell factor for further development. Blood 78:2493鈥?977
    12. Koury MJ, Bondurant MC (1990) Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science 248:378鈥?81 CrossRef
    13. Wu H, Liu X, Jaenisch R, Lodish HF (1995) Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83:59鈥?7 CrossRef
    14. Koury MJ (2005) Erythropoietin: the story of hypoxia and a finely regulated hematopoietic hormone. Exp Hematol 33:1263鈥?270 CrossRef
    15. Gregory T, Yu C, Ma A, Orkin SH, Blobel GA, Weiss MJ (1999) GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression. Blood 94:87鈥?6
    16. Paulson RF, Shi L, Wu DC (2011) Stress erythropoiesis: new signals and new stress progenitor cells. Curr Opin Hematol 18:139鈥?45 CrossRef
    17. Cantor AB, Orkin SH (2002) Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene 21:3368鈥?376 CrossRef
    18. Wichmann HE, Loeffler M (1985) Model description, irradiation, erythropoietic stimulation. In: Wichmann HE (ed) Mathematical modeling of cell proliferation, vol 1. CRC, Boca Raton
    19. Wichmann HE, Loeffler M, Pantel K, Wulff H (1989) A mathematical model of erythropoiesis in mice and rats. Part 2: stimulated erythropoiesis. Cell Tissue Kinet 22:31鈥?9
    20. Wulff H, Wichmann HE, Pantel K, Loeffler M (1989) A mathematical model of erythropoiesis in mice and rats. Part 3: suppressed erythropoiesis. Cell Tissue Kinet 22:51鈥?1
    21. B茅lair J, Mackey MC, Mahaffy JM (1995) Age-structured and two-delay models for erythropoiesis. Math Biosci 128:317鈥?46 CrossRef
    22. Ackleh AS, Deng K, Cole CE, Tran HT (2004) Existence-uniqueness and monotone approximation for an erythropoiesis age-structured model. J Math Anal Appl 289:530鈥?44 CrossRef
    23. Ackleh AS, Deng K, Ito K, Thibodeaux J (2006) A structured erythropoiesis model with nonlinear cell maturation velocity and hormone decay rate. Math Biosci 204:21鈥?8 CrossRef
    24. Mahaffy JM, B茅lair J, Mackey MC (1998) Hematopoietic model with moving boundary condition and state dependent delay: applications in erythropoiesis. J Theor Biol 190:135鈥?46 CrossRef
    25. Crauste F, Pujo-Menjouet L, G茅nieys S, Molina C, Gandrillon O (2008) Adding self-renewal in committed erythroid progenitors improves the biological relevance of a mathematical model of erythropoiesis. J Theor Biol 250:322鈥?38 CrossRef
    26. Savill NJ, Chadwick W, Reece SE (2009) Quantitative analysis of mechanisms that govern red blood cell age structure and dynamics during anaemia. PLoS Comput Biol 5:e1000416 CrossRef
    27. Crauste F, Demin I, Gandrillon O, Volpert V (2010) Mathematical study of feedback control roles and relevance in stress erythropoiesis. J Theor Biol 263:303鈥?16 CrossRef
    28. Demin I, Crauste F, Gandrillon O, Volpert V (2010) A multi-scale model of erythropoiesis. J Biol Dyn 4:59鈥?0 CrossRef
    29. Bessonov N, Pujo-Menjouet L, Volpert V (2006) Cell Modelling of Hematopoiesis. Math Model Nat Phenom 1:81鈥?03 CrossRef
    30. Bessonov N, Crauste F, Demin I, Volpert V (2009) Dynamics of erythroid progenitors and erythroleukemia. Math Model Nat Phenom 4:210鈥?32 CrossRef
    31. Bessonov N, Demin I, Pujo-Menjouet L, Volpert V (2009) A multi-agent model describing self-renewal of differentiation effects on the blood cell population. Math Comput Model 49:2116鈥?127 CrossRef
    32. Bessonov N, Crauste F, Fischer S, Kurbatova P, Volpert V (2011) Application of hybrid models to blood cell production in the bone marrow. Math Model Nat Phenom 6:2鈥?2 CrossRef
    33. Gandrillon O, Schmidt U, Beug H, Samarut J (1999) TGFbeta cooperates with TGFalpha to induce the self-renewal of normal erythrocytic progenitors: evidence for an autocrine mechanism. EMBO J 18:2764鈥?781 CrossRef
    34. Fischer S, Kurbatova P, Bessonov N, Gandrillon O, Volpert V, Crauste F (2012) Modeling erythroblastic islands: using a hybrid model to assess the function of central macrophage. J Theor Biol 298:92鈥?06 CrossRef
    35. Rhodes MM, Kopsombut P, Bondurant MC, Price JO, Koury MJ (2008) Adherence to macrophages in erythroblastic islands enhances erythroblast proliferation and increases erythrocyte production by a different mechanism than erythropoietin. Blood 111:1700鈥?708 CrossRef
    36. Rubiolo C, Piazzolla D, Meissl K, Beug H, Huber JC, Kolbus A, Baccarini M (2006) A balance between Raf-1 and Fas expression sets the pace of erythroid differentiation. Blood 108:152鈥?59 CrossRef
    37. Dazy S, Damiola F, Parisey N, Beug H, Gandrillon O (2003) The MEK-1/ ERKs signalling pathway is differentially involved in the self-renewal of early and late avian erythroid progenitor cells. Oncogene 22:9205鈥?216 CrossRef
    38. Panzenb枚ck B, Bartunek P, Mapara MY, Zenke M (1998) Growth and differentiation of human stem cell factor/erythropoietin-dependent erythroid progenitor cells in vitro. Blood 92:3658鈥?668
    39. von Lindern M, Zauner W, Mellitzer G, Steinlein P, Fritsch G, Huber K, L枚wenberg B, Beug H (1999) The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. Blood 94:550鈥?59
    40. Bauer A, Tronche F, Wessely O, Kellendonk C, Reichardt HM, Steinlein P, Sch眉tz G, Beug H (1999) The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev 13:2996鈥?002 CrossRef
    41. von Lindern M, Schmidt U, Beug H (2004) Control of erythropoiesis by erythropoietin and stem cell factor: a novel role for Bruton鈥檚 tyrosine kinase. Cell Cycle 3:876鈥?79 CrossRef
    42. Varricchio L, Tirelli V, Masselli E, Ghinassi B, Saha N, Besmer P, Migliaccio AR (2012) The expression of the glucocorticoid receptor in human erythroblasts is uniquely regulated by KIT ligand: implications for stress erythropoiesis. Stem Cells Dev 21:2852鈥?865 CrossRef
    43. Millot S, Andrieu V, Letteron P, Lyoumi S, Hurtado-Nedelec M, Karim Z, Thibaudeau O, Bennada S, Charrier JL, Lasocki S, Beaumont C (2010) Erythropoietin stimulates spleen BMP4-dependent stress erythropoiesis and partially corrects anemia in a mouse model of generalized inflammation. Blood 116:6072鈥?081 CrossRef
    44. Sadahira Y, Yasuda T, Yoshino T, Manabe T, Takeishi T, Kobayashi Y, Ebe Y, Naito M (2000) Impaired splenic erythropoiesis in phlebotomized mice injected with CL2MDP-liposome: an experimental model for studying the role of stromal macrophages in erythropoiesis. J Leukoc Biol 68:464鈥?70
    45. Chow A, Huggins M, Ahmed J, Hashimoto D, Lucas D, Kunisaki Y, Pinho S, Leboeuf M, Noizat C, van Rooijen N, Tanaka M, Zhao ZJ, Bergman A, Merad M, Frenette PS (2013) CD169(+) macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med 19:429鈥?36 CrossRef
    46. Ramos P, Casu C, Gardenghi S, Breda L, Crielaard BJ, Guy E, Marongiu MF, Gupta R, Levine RL, Abdel-Wahab O, Ebert BL, Van Rooijen N, Ghaffari S, Grady RW, Giardina PJ, Rivella S (2013) Macrophages support pathological erythropoiesis in polycythemia vera and \(\beta \) -thalassemia. Nat Med 19:437鈥?45 CrossRef
    47. Bessonov N, Eymard N, Kurbatova P, Volpert V (2012) Mathematical modelling of erythropoiesis in vivo with multiple erythroblastic islands. Appl Math Lett 25:1217鈥?221 CrossRef
    48. Kurbatova N, Bernard S, Bessonov N, Crauste F, Demin I, Dumontet C, Fischer S, Volpert V (2011) Hybrid model of erythropoiesis and leukemia treatment with cytosine arabinoside. SIAM J Appl Math 71(6):2246鈥?268 CrossRef
    49. Cheong R, Bergmann A, Werner SL, Regal J, Hoffmann A, Levchenko A (2006) Transient I \(\kappa \) B kinase activity mediates temporal NF- \(\kappa \) B dynamics in response to a wide range of tumor necrosis factor-Doses. J Biol Chem 281:2945鈥?950 CrossRef
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematical Biology
    Applications of Mathematics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1416
文摘
Erythropoiesis, the process of red blood cell production, occurs mainly in the bone marrow. The functional unit of mammalian erythropoiesis, the erythroblastic island, consists of a central macrophage surrounded by adherent erythroid progenitor cells (CFU-E/Pro-EBs) and their differentiating progeny, the erythroblasts. Central macrophages display on their surface or secrete various growth or inhibitory factors that influence the fate of the surrounding erythroid cells. CFU-E/Pro-EBs have three possible fates: (a) expansion of their numbers without differentiation, (b) differentiation into reticulocytes that are released into the blood, (c) death by apoptosis. CFU-E/Pro-EB fate is under the control of a complex molecular network, that is highly dependent upon environmental conditions in the erythroblastic island. In order to assess the functional role of space coupled with the complex network behavior in erythroblastic islands, we developed hybrid discrete-continuous models of erythropoiesis. A model was developed in which cells are considered as individual physical objects, intracellular regulatory networks are modeled with ordinary differential equations and extracellular concentrations by partial differential equations. We used the model to investigate the impact of an important difference between humans and mice in which mature late-stage erythroblasts produce the most Fas-ligand in humans, whereas early-stage erythroblasts produce the most Fas-ligand in mice. Although the global behaviors of the erythroblastic islands in both species were similar, differences were found, including a relatively slower response time to acute anemia in humans. Also, our modeling approach was very consistent with in vitro culture data, where the central macrophage in reconstituted erythroblastic islands has a strong impact on the dynamics of red blood cell production. The specific spatial organization of erythroblastic islands is key to the normal, stable functioning of mammalian erythropoiesis, both in vitro and in vivo. Our model of a simplified molecular network controlling cell decision provides a realistic functional unit of mammalian erythropoiesis that integrates multiple microenvironmental influences within the erythroblastic island with those of circulating regulators of erythropoiesis, such as EPO and glucocorticosteroids, that are produced at remote sites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700