Sintered anorganic bone graft increases autocrine expression of VEGF, MMP-2 and MMP-9 during repair of critical-size bone defects
详细信息    查看全文
  • 作者:Caroline Andrade Rocha (1)
    Tania Mary Cestari (1)
    Hugo Alberto Vidotti (1)
    Gerson Francisco de Assis (1)
    Gustavo Pompermaier Garlet (1)
    Rumio Taga (1)
  • 关键词:Vascular endothelial growth factor ; Metalloproteinase ; Anorganic bovine bone ; Critical ; size bone defect ; Bone healing
  • 刊名:Journal of Molecular Histology
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:45
  • 期:4
  • 页码:447-461
  • 全文大小:22,860 KB
  • 参考文献:1. Accorsi-Mendonca T, Conz MB, Barros TC, de Sena LA, Soares Gde A, Granjeiro JM (2008) Physicochemical characterization of two deproteinized bovine xenografts. Braz Oral Res 22(1):5-0 CrossRef
    2. Aherne W (1967) Methods of counting discrete tissue components in microscopical sections. J R Microsc Soc 87:493-08 CrossRef
    3. Artzi Z, Nemcovsky CE, Tal H (2001) Efficacy of porous bovine bone mineral in various types of osseous deficiencies: clinical observations and literature review. Int J Periodontics Restor Dent 21(4):395-05
    4. Artzi Z, Kozlovsky A, Nemcovsky CE, Weinreb M (2005) The amount of newly formed bone in sinus grafting procedures depends on tissue depth as well as the type and residual amount of the grafted material. J Clin Periodontol 32(2):193-99. doi:10.1111/j.1600-051X.2005.00656.x CrossRef
    5. Bassil J, Senni K, Changotade S, Baroukh B, Kassis C, Naaman N, Godeau G (2011) Expression of MMP-2, 9 and 13 in newly formed bone after sinus augmentation using inorganic bovine bone in human. J Periodontal Res 46(6):756-62 CrossRef
    6. Berendsen AD, Olsen BR (2014) How vascular endothelial growth factor-A (VEGF) regulates differentiation of mesenchymal stem cells. J Histochem Cytochem Off J Histochem Soc. doi:10.1369/0022155413516347
    7. Boeck-Neto RJ, Artese L, Piattelli A, Shibli JA, Perrotti V, Piccirilli M, Marcantonio E Jr (2009) VEGF and MVD expression in sinus augmentation with autologous bone and several graft materials. Oral Dis 15(2):148-54 CrossRef
    8. Bouletreau PJ, Warren SM, Spector JA, Peled ZM, Gerrets RP, Greenwald JA, Longaker MT (2002) Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing. Plast Reconstr Surg 109(7):2384-397 CrossRef
    9. Cawston TE, Young DA (2010) Proteinases involved in matrix turnover during cartilage and bone breakdown. Cell Tissue Res 339(1):221-35. doi:10.1007/s00441-009-0887-6 CrossRef
    10. Cestari TM, Granjeiro JM, de Assis GF, Garlet GP, Taga R (2009) Bone repair and augmentation using block of sintered bovine-derived anorganic bone graft in cranial bone defect model. Clin Oral Implants Res 20(4):340-50. doi:10.1111/j.1600-0501.2008.01659.x CrossRef
    11. Chen Y, Hanaoka M, Chen P, Droma Y, Voelkel NF, Kubo K (2009) Protective effect of beraprost sodium, a stable prostacyclin analog, in the development of cigarette smoke extract-induced emphysema. Am J Physiol Lung Cell Mol Physiol 296(4):L648–L656. doi:10.1152/ajplung.90270.2008 CrossRef
    12. Chen D, Tian W, Li Y, Tang W, Zhang C (2012a) Osteoblast-specific transcription factor Osterix (Osx) and HIF-1alpha cooperatively regulate gene expression of vascular endothelial growth factor (VEGF). Biochem Biophys Res Commun 424(1):176-81 CrossRef
    13. Chen D, Zhang X, Guo Y, Shi S, Mao X, Pan X, Cheng T (2012b) MMP-9 inhibition suppresses wear debris-induced inflammatory osteolysis through downregulation of RANK/RANKL in a murine osteolysis model. Int J Mol Med 30(6):1417-423. doi:10.3892/ijmm 2012.1145
    14. Cho JS, Kim HS, Um SH, Rhee SH (2013) Preparation of a novel anorganic bovine bone xenograft with enhanced bioactivity and osteoconductivity. J Biomed Mater Res B Appl Biomater 101(5):855-69. doi:10.1002/jbm.b.32890 CrossRef
    15. Davis GE, Senger DR (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97(11):1093-107 CrossRef
    16. De Souza Nunes LS, De Oliveira RV, Holgado LA, Nary Filho H, Ribeiro DA, Matsumoto MA (2010) Immunoexpression of Cbfa-1/Runx2 and VEGF in sinus lift procedures using bone substitutes in rabbits. Clin Oral Implants Res 21(6):584-90 CrossRef
    17. Degidi M, Artese L, Rubini C, Perrotti V, Iezzi G, Piattelli A (2006) Microvessel density and vascular endothelial growth factor expression in sinus augmentation using Bio-Oss. Oral Dis 12(5):469-75. doi:10.1111/j.1601-0825.2006.01222.x CrossRef
    18. Ghajar CM, George SC, Putnam AJ (2008) Matrix metalloproteinase control of capillary morphogenesis. Crit Rev Eukaryot Gene Expr 18(3):251-78 CrossRef
    19. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109(5):625-37 CrossRef
    20. Heissig B, Hattori K, Friedrich M, Rafii S, Werb Z (2003) Angiogenesis: vascular remodeling of the extracellular matrix involves metalloproteinases. Curr Opin Hematol 10(2):136-41 CrossRef
    21. Heissig B, Ohki-Koizumi M, Tashiro Y, Gritli I, Sato-Kusubata K, Hattori K (2012) New functions of the fibrinolytic system in bone marrow cell-derived angiogenesis. Int J Hematol 95(2):131-37. doi:10.1007/s12185-012-1016-y CrossRef
    22. Iezzi G, Degidi M, Scarano A, Petrone G, Piattelli A (2007) Anorganic bone matrix retrieved 14?years after a sinus augmentation procedure: a histologic and histomorphometric evaluation. J Periodontol 78(10):2057-061 CrossRef
    23. Itagaki T, Honma T, Takahashi I, Echigo S, Sasano Y (2008) Quantitative analysis and localization of mRNA transcripts of type I collagen, osteocalcin, MMP 2, MMP 8, and MMP 13 during bone healing in a rat calvarial experimental defect model. Anat Rec 291(8):1038-046. doi:10.1002/ar.20717 CrossRef
    24. Joschek S, Nies B, Krotz R, Goferich A (2000) Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone. Biomaterials 21(16):1645-658. doi:10.1016/S0142961200000363 CrossRef
    25. Karsdal MA, Larsen L, Engsig MT, Lou H, Ferreras M, Lochter A, Delaisse JM, Foged NT (2002) Matrix metalloproteinase-dependent activation of latent transforming growth factor-beta controls the conversion of osteoblasts into osteocytes by blocking osteoblast apoptosis. J Biol Chem 277(46):44061-4067. doi:10.1074/jbc.M207205200 CrossRef
    26. Kong D, Li Y, Wang Z, Banerjee S, Sarkar FH (2007) Inhibition of angiogenesis and invasion by 3,3-diindolylmethane is mediated by the nuclear factor-κB downstream target genes MMP-9 and uPA that regulated bioavailability of vascular endothelial growth factor in prostate cancer. Cancer Res 67(7):3310-319 CrossRef
    27. Maitre B, Boussat S, Jean D, Gouge M, Brochard L, Housset B, Adnot S, Delclaux C (2001) Vascular endothelial growth factor synthesis in the acute phase of experimental and clinical lung injury. Eur Respir J 18(1):100-06 CrossRef
    28. Matsumoto MA, Caviquioli G, Biguetti CC, de Andrade Holgado L, Saraiva PP, Renno AC, Kawakami RY (2012) A novel bioactive vitroceramic presents similar biological responses as autogenous bone grafts. J Mater Sci Mater Med?23(6):1447-456. doi:10.1007/s10856-012-4612-8
    29. Meury T, Verrier S, Alini M (2006) Human endothelial cells inhibit BMSC differentiation into mature osteoblasts in vitro by interfering with osterix expression. J Cell Biochem 98(4):992-006 CrossRef
    30. Moreschi E, Biguetti CC, Comparim E, De Andrade HL, Ribeiro-Junior PD, Nary-Filho H, Matsumoto MA (2013) Cyclooxygenase-2 inhibition does not impair block bone grafts healing in rabbit model. J Mol Histol 44(6):723-31. doi:10.1007/s10735-013-9519-2 CrossRef
    31. Niida S, Kaku M, Amano H, Yoshida H, Kataoka H, Nishikawa S, Tanne K, Maeda N, Kodama H (1999) Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. J Exp Med 190(2):293-98 CrossRef
    32. Ohtsubo S, Matsuda M, Takekawa M (2003) Angiogenesis after sintered bone implantation in rat parietal bone. Histol Histopathol 18(1):153-63
    33. Ortega N, Behonick D, Stickens D, Werb Z (2003) How proteases regulate bone morphogenesis. Ann N Y Acad Sci 995:109-16 CrossRef
    34. Ortega N, Behonick DJ, Werb Z (2004) Matrix remodeling during endochondral ossification. Trends Cell Biol 14(2):86-3 CrossRef
    35. Ozdemir MT, Kir MC (2011) Repair of long bone defects with demineralized bone matrix and autogenous bone composite. Indian J Orthop 45(3):226-30. doi:10.4103/0019-5413.80040IJOrtho-45-226 CrossRef
    36. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8(3):221-33. doi:10.1038/nrm2125 CrossRef
    37. Peng H, Usas A, Olshanski A, Ho AM, Gearhart B, Cooper GM, Huard J (2005) VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J Bone Miner Res 20(11):2017-027. doi:10.1359/JBMR.050708 CrossRef
    38. Portal-Nunez S, Lozano D, Esbrit P (2012) Role of angiogenesis on bone formation. Histol Histopathol 27(5):559-66
    39. Schipani E, Maes C, Carmeliet G, Semenza GL (2009) Regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF. J Bone Miner Res 24(8):1347-353 CrossRef
    40. Shum L, Rabie AB, Hagg U (2004) Vascular endothelial growth factor expression and bone formation in posterior glenoid fossa during stepwise mandibular advancement. Am J Orthod Dentofac Orthop 125(2):185-90 CrossRef
    41. Soker S, Machado M, Atala A (2000) Systems for therapeutic angiogenesis in tissue engineering. World J Urol 18(1):10-8 CrossRef
    42. Stamenkovic I (2003) Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol 200(4):448-64. doi:10.1002/path.1400 CrossRef
    43. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463-16. doi:10.1146/annurev.cellbio.17.1.46317/1/463 CrossRef
    44. Sun X, Kang Y, Bao J, Zhang Y, Yang Y, Zhou X (2013) Modeling vascularized bone regeneration within a porous biodegradable CaP scaffold loaded with growth factors. Biomaterials 34(21):4971-981. doi:10.1016/j.biomaterials.2013.03.015 CrossRef
    45. Traini T, Valentini P, Iezzi G, Piattelli A (2007) A histologic and histomorphometric evaluation of anorganic bovine bone retrieved 9?years after a sinus augmentation procedure. J Periodontol 78(5):955-61 CrossRef
    46. Uchida S, Sakai A, Kudo H, Otomo H, Watanuki M, Tanaka M, Nagashima M, Nakamura T (2003) Vascular endothelial growth factor is expressed along with its receptors during the healing process of bone and bone marrow after drill-hole injury in rats. Bone 32(5):491-01. doi:10.1016/S8756-3282(03)00053-X CrossRef
    47. Weibel ER (1969) Stereological principles for morphometry in electron microscopic cytology. Int Rev Cytol 26:235-02 CrossRef
    48. Wernike E, Montjovent MO, Liu Y, Wismeijer D, Hunziker EB, Siebenrock KA, Hofstetter W, Klenke FM (2010) VEGF incorporated into calcium phosphate ceramics promotes vascularisation and bone formation in vivo. Eur Cell Mater 19:30-0
    49. Wu C, Zhou Y, Fan W, Han P, Chang J, Yuen J, Zhang M, Xiao Y (2012) Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials 33(7):2076-085 CrossRef
    50. Wu C, Zhou Y, Xu M, Han P, Chen L, Chang J, Xiao Y (2013) Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 34(2):422-33 CrossRef
    51. Yang YQ, Tan YY, Wong R, Wenden A, Zhang LK, Rabie AB (2012) The role of vascular endothelial growth factor in ossification. Int J Oral Sci 4:64-8 CrossRef
    52. Zambuzzi WF, Oliveira RC, Pereira FL, Cestari TM, Taga R, Granjeiro JM (2006) Rat subcutaneous tissue response to macrogranular porous anorganic bovine bone graft. Braz Dent J 17(4):274-78 CrossRef
    53. Zambuzzi WF, Fernandes GV, Iano FG, Fernandes MDS, Granjeiro JM, Oliveira RC (2012) Exploring anorganic bovine bone granules as osteoblast carriers for bone bioengineering: a study in rat critical-size calvarial defects. Braz Dent J 23(4):315-21 CrossRef
    54. Zelzer E, Olsen BR (2005) Multiple roles of vascular endothelial growth factor (VEGF) in skeletal development, growth, and repair. Curr Top Dev Biol 65:169-87. doi:10.1016/S0070-2153(04)65006-X CrossRef
    55. Zelzer E, Mamluk R, Ferrara N, Johnson RS, Schipani E, Olsen BR (2004) VEGFA is necessary for chondrocyte survival during bone development. Development 131(9):2161-171. doi:10.1242/dev.01053dev.01053 CrossRef
  • 作者单位:Caroline Andrade Rocha (1)
    Tania Mary Cestari (1)
    Hugo Alberto Vidotti (1)
    Gerson Francisco de Assis (1)
    Gustavo Pompermaier Garlet (1)
    Rumio Taga (1)

    1. Department of Biological Sciences, Bauru School of Dentistry, University of S?o Paulo, Alameda Octávio Pinheiro Brisolla 9-75, Bauru, SP, 17012-901, Brazil
  • ISSN:1567-2387
文摘
This study aimed to evaluate morphometrically the bone formation and immunohistochemically the expression of vascular endothelial growth factor (VEGF) and metalloproteinase (MMP)-2 and -9 during the healing of critical-size defects treated with sintered anorganic bone (sAB). The 8-mm diameter full-thickness trephine defects created in the parietal bones of rats were filled with sAB (test group) or blood clot (CSD-control group). At 7, 14, 21, 30, 90 and 180?days postoperatively (n?=?6/period) the volume of newly formed bone and total number of immunolabeled cells (Ntm) for each protein were determined. Bone formation was smaller and faster in the CSD-control group, stabilizing at 21?days (6.74?mm3). The peaks of VEGF, MMP-2 and MMP-9 occurred at 7 and 14?days in fibroblasts and osteoblasts, with mean reduction of 0.80 time at 21?days, keeping constant until 180?days. In the test group, sAB provided continuous bone formation between particles throughout all periods. The peak of MMP-2 was observed at 7-4?days in connective tissue cells and for VEGF and MMP-9 at 30?days in osteoblasts and osteocytes. Ntm for VEGF, MMP-2 and MMP-9 were in average, respectively, 3.70, 2.03 and 5.98 times higher than in the control group. At 180?days, newly formed bone (22.9?mm3) was 3.74 times greater in relation to control. The physical and chemical properties of sAB allow increased autocrine expression of VEGF, MMP-2 and MMP-9, favoring bone formation/remodeling with very good healing of cranial defects when compared to natural repair in the CSD-control.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700