On the K?hler form of complex \(L^{p}\) space and its Lagrangian subspaces
详细信息    查看全文
  • 作者:Yang Liu
  • 关键词:Complex space ; K?hler form ; Lagrangian subspace ; Differential geometry ; Complex structure ; 70S05 ; 32Q15 ; 53C56 ; 47A15 ; 53C65
  • 刊名:Journal of Pseudo-Differential Operators and Applications
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:6
  • 期:2
  • 页码:265-277
  • 全文大小:456 KB
  • 参考文献:1.Aikou, T.: On complex finsler manifolds. Rep. Kagoshima Univ. 24, 9-5 (1991)MATH MathSciNet
    2.Bao, D.D.-W.: A Sampler of Riemann–Finsler Geometry, vol. 50. Cambridge University Press, Cambridge (2004)MATH
    3.Bernig, A., Joseph, H.G.F.: Hermitian integral geometry. Ann. Math. 173(2), 907-45 (2011)MATH
    4.Chern, S.-S.: Finsler geometry is just Riemannian geometry without the quadratic equation. Notices Am. Math. Soc. 43(9), 959-63 (1996)MATH MathSciNet
    5.Chern, S.S., Shen, Z.: Riemann–Finsler Geometry. World Scientific, Singapore (2005)View Article MATH
    6.Chunping, Z., Tongde, Z.: Horizontal Laplace operator in real Finsler vector bundles. Acta Mathematica Scientia 28(1), 128-40 (2008)View Article MATH
    7.Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 4(4), 1168-200 (2005)MATH MathSciNet
    8.Foucart, S., Lai, M.-J.: Sparsest solutions of underdetermined linear systems via \(q\) -minimization for \(0 < q < =1\) . Appl. Comput. Harmonic Anal. 26(3), 395-07 (2009)
    9.Klain, D.: Even valuations on convex bodies. Trans. Am. Math. Soc. 352(1), 71-3 (2000)MATH MathSciNet
    10.Kobayashi, S., Sūgakkai, N.: Differential Geometry of Complex Vector Bundles. Iwanami Shoten, Tokyo (1987)View Article MATH
    11.Kreyszig, E.: Introductory Functional Analysis with Applications, vol. 81. Wiley, New York (1989)MATH
    12.Lai, M.-J., Liu, Y.: The null space property for sparse recovery from multiple measurement vectors. Appl. Comput. Harmonic Anal. 30(3), 402-06 (2011)MATH MathSciNet
    13.Lai, M.J., Liu, Y.: The probabilistic estimates on the largest and smallest \(q\) -singular values of random matrices. Math. Comput. (2014). doi:10.-090/?S0025-5718-2014-02895-0
    14.Liu, Y.: On the lagrangian subspaces of complex minkowski space. J. Math. Sci. Adv. Appl. 7(2), 87-3 (2011)
    15.Liu, Y.: On the range of cosine transform of distributions for torus–invariant complex Minkowski spaces. Far East J. Math. Sci. 39(2), 733-53 (2010)
    16.Liu, Y.: On explicit holmes-thompson area formula in integral geometry. Accepted for publication in Int. Math. Forum, arXiv:-009.-057 (2011)
    17.Munteanu, G.: Complex Finsler spaces. In: Complex Spaces in Finsler, Lagrange and Hamilton Geometries. Fundamental Theories of Physics, vol. 141, pp. 55-0. Springer (2004)
    18.álvarez Paiva, J.C., Fernandes, E., et al.: Crofton formulas in projective Finsler spaces. Electron. Res. Announc. Am. Math. Soc 4, 91-00 (1998)MATH
    19.Rund, H.: The Differential Geometry of Finsler Spaces. Springer, Berlin (1959)View Article MATH
    20.Sakai, T.: Riemannian Geometry. Translation of Mathematical Monographs, vol. 149. American Mathematical Society, Providence, RI (1996)
    21.Santaló, L.A.: Integral geometry in Hermitian spaces. Am. J. Math. 74(2), 423-34 (1952)
    22.Schneider, R.: On integral geometry in projective Finsler spaces. J. Contemp. Math. Anal. 37(1), 30-6 (2002)MathSciNet
    23.Weisberg, H.: Central Tendency and Variability, 83rd edn. Sage, California (1992)
    24.Xia, Y.: Newton’s method for the ellipsoidal \(l_p\) norm facility location problem. In: Computational Science-ICCS 2006, volume 3991, pp. 8-5 (2006)
    25.Zeidler, E.: Nonlinear Functional Analysis and Its Applications, vol. 2. Springer, Berlin (1989)
  • 作者单位:Yang Liu (1)

    1. Department of Mathematics, Michigan State University, East Lansing, MI, 48824, USA
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:None Assigned
  • 出版者:Birkh盲user Basel
  • ISSN:1662-999X
文摘
In this article, we obtain the K?hler forms for complex \(L^{p}\) spaces, \(1\le p<\infty \), and we find and describe explicitly the set of all Lagrangian subspaces of the complex \(L^{p}\) space. The results in this article show that the Lagrangians of complex \(L^{2}\) space are distinct from those of complex \(L^{p}\) spaces for \(1\le p<\infty \), \(p\ne 2\). As an application, the symplectic structure determined by the K?hler form can be used to determine the symplectic form of the complex Holmes–Thompson volumes restricted on complex lines in integral geometry of complex \(L^{p}\) space.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700