Novel Synthesis and Nanostructure Controlled Magnetic Characteristics of ε-Fe3N and γ᾿Ni x Fe
详细信息    查看全文
  • 作者:Pragnya P. Mishra ; M. Manivel Raja…
  • 关键词:Nanocrystalline ; X ; ray diffraction ; Magnetism ; Chemical synthesis ; Nitride ; Electron microscopy
  • 刊名:Journal of Superconductivity Incorporating Novel Magnetism
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:29
  • 期:5
  • 页码:1347-1356
  • 全文大小:630 KB
  • 参考文献:1.Theerthagiri, J., Dalavi, S. B., Manivel Raja, M., Panda, R. N.: Magnetic properties of nanocrystalline ε-Fe3N and Co 4N phases synthesized by newer precursor route. Mater. Res. Bull. 48, 4444–4448 (2013)CrossRef
    2.Panda, R.N., Gajbhiye, N. S.: Mossbauer and magnetic studies of nanocrystalline γ′-Fe4−xNi x N (0.2 ≤ x ≤0.8) compounds. J. Magn. Magn. Mater. 195, 396–495 (1999)ADS CrossRef
    3.Tasaki, A., Tagawa, K., Kita, E., Harada, S., Kusunose, T.: Recording tapes using iron nitride fine powder. IEEE Trans. Magn. 17, 3026–3028 (1981)ADS CrossRef
    4.Andrimandroso, D., Fefilatiev, L., Demazeau, G., Fournes, L., Pouchard, M.: Mössbauer resonance studies on Sn substituted Fe4N. Mater. Res. Bull. 19, 1187–1194 (1984)CrossRef
    5.Loloee, R.: Epitaxial Ni3FeN thin films: a candidate for spintronic devices and magnetic sensors. J. appl. Phys. 112, 023902(1–6) (2012)
    6.Zhang, P., Wang, X., Wang, W., Lei, X., Yin, W., Yang, H.: The structure and magnetic properties of Fe3N as photo-catalyst applied in hydrogen generation induced by visible light. RSC Adv. (2015). doi:. to be published
    7.Shoji, H., Nashi, H., Eguchi, K., Takahashi, M.: An experimental trial for the synthesis of α ″-(Fe100−x Co x) 16 N 2(x =0-30) martensite films by reactive sputtering. J. Magn. Magn. Mater. 162, 202–210 (1996)ADS CrossRef
    8.Panda, R.N., Gajbhiye, N. S.: Magnetic properties of nanocrystalline γ′–Fe4 N and ε–Fe3N synthesized by citrate route. IEEE Trans. Magn. 30, 542–548 (1998)ADS CrossRef
    9.Suzuki, K., Morita, H., Kaneko, T., Yoshida, H., Fujimori, H.: Crystal structure and magnetic properties of the compound FeN. J. Alloys Compd. 201, 11–16 (1993)CrossRef
    10.Panda, R.N., Gajbhiye, N. S.: Magnetic properties of nanocrystalline γ-Fe-Ni-N nitride systems. J. appl. Phys. 86, 3295–3302 (1999)ADS CrossRef
    11.Xue, D., Li, F., Yang, J., Kong, Y., Gao, M.: Effects of substitutional atoms on the properties of γ′-(Fe1−x-TM x)4N (TM = Co, Ni) compounds. J. Magn. Magn. Mater. 172, 165–172 (1997)ADS CrossRef
    12.Siberchicot, B., Matar, S.F., Fournes, L., Demazeau, G., Hagenmuller, P.: Influence of the substitution of manganese for iron in the Fe4N lattice on particle formation and magnetic properties. J. Solid State Chem. 84, 10–15 (1990)ADS CrossRef
    13.Diao, X.G., Scorzelli, R. B., Rechenberg, H.: R.: 57Fe Mossbauer study of perovskite-type Fe-Ni nitrides γ′-(Fe1−xNi x )4N (0 ≤x≤ 0.8). J. Magn. Magn. Mater. 218, 81–90 (2000)ADS CrossRef
    14.Mi, W.B., Guo, Z.B., Feng, X.P., Bai, H.L.: Reactively sputtered epitaxial γ′-Fe4N films: surface morphology, microstructure, magnetic and electrical transport properties. Acta Mater. 61, 6387–6395 (2013)CrossRef
    15.Kurian, S., Bhattacharya, S., Desimoni, J., Peltzer, E.L., Blanca, Y., Rebaza, A. V. G, Gajbhiye, N.S.: Investigation of γ′-Fe4N-GaN nanocomposites: structural and magnetic characterization, Mossbauer spectroscopy and ab initio calculations. J. Phys. Chem. C. 114, 17542–17549 (2010)CrossRef
    16.Wang, L.L., Zheng, W.T., Ana, T., Mab, N., Gong, J.: Effect of Ni concentration on the structure and magnetic properties for nanocrystalline Fe–Ni–N thin films. J. Alloys Compd. 495, 265–267 (2010)CrossRef
    17.Panda, R. N., Kaskel, S.: Synthesis and characterization of high surface area molybdenum nitride. J. mater. Sci. 41, 2465–2470 (2006)ADS CrossRef
    18.Bem, D.S., Zur Loye, H.-C.: Synthesis of the new ternary transition metal nitride FeWN 2 via ammonolysis of a solid state oxide precursor. J. Solid State Chem. 104, 467–469 (1993)ADS CrossRef
    19.Feng, Y.B.: Magnetic properties of nanometer-sized Fe4N compound. J. appl. Phys. 76, 6594 (1994)ADS CrossRef
    20.Jack, K.H.: The occurrence and the crystal structure of α ″ – iron nitride, a new type of interstitial alloy formed during the tempering of nitrogen-martensite. Proc. Roy. Soc. (London) A. 208, 216–224 (1951)ADS CrossRef
    21.Culity, B. D.: Elements of X-ray diffraction. Reading, MA: Addison-Wesley (1956)
    22.Gajbhiye, N. S., Bhattacharya, S.: Mossbauer and magnetic studies for the coexistence of ε–Fe3−xNixN and γ′-Fe4−yNiyN phases in Fe-Ni-N nano particles. Indian. J. Pure Appl. Phys. 45, 834–838 (2007)
    23.Gajbhiye, N.S., Panda, R. N., Ningthoujam, R. S., Bhattacharya, S.: Magnetism of nanostructured iron nitride (Fe–N) systems. Phys.stat.sol.(c). 12, 3252–3259 (2004)CrossRef
    24.Wei, Z., Xia, T., Ma, J., Feng, W., Dai, J., Wang, Q., Yan, P.: Investigation of the lattice expansion for Ni nanoparticles. Mater. Charact. 58, 1019–1024 (2007)CrossRef
    25.Diehm, P. M., Agoston, P., Albe, K.: Size-dependent lattice expansion in nanoparticles: reality or anomaly? ChemPhysChem 13, 2443–2454 (2012)CrossRef
    26.Pak, J., Lin, W., Wang, K., Chinchore, A., Shi, M., Ingram, D.C., Smith, A. R.: Growth of epitaxial iron nitride ultrathin film on zinc-blende gallium nitride. J. Vac. Sci. Technol. A 28, 536–540 (2010)CrossRef
    27.Mammeri, F.Z., Chekour, L., Rouag, N.: Characterization of nitride thin films using SEM and EDX. Acta. Phys. Pol. A 123, 294–295 (2013)CrossRef
    28.Liu, J., Meng, X.M., Jiang, Y., Lee, C.S., Bello, I., Lee, S.T.: Gallium nitride nanowires doped with silicon. Appl. Phys. Lett. 83, 4241–4243 (2003)ADS CrossRef
    29.Bean, C. P., Jacobs, I. S.: Magnetization of a dilute suspension of a multidomain ferromagnetic. J. Appl. Phys. 31, 1228–1230 (1960)ADS CrossRef
    30.Morup, S., Brok, E., Frandsen, C.: Spin structures in magnetic nanoparticles. J Nanomaterials. 2013(2013)1–8, Article ID 720629
    31.Hwang, J.H., Dravid, V. P., Teng, M. H., Host, J. J., Elliott, B. R., Johnson, D. L., Mason, T. O.: Magnetic properties of graphitically encapsulated nickel nanocrystals. J. Mater. Res. 12, 1076–1082 (1997)ADS CrossRef
    32.Li, F., Yang, J., Xue, D., Zhou, R.: Mössbauer study of the (Fe1−xNi x )4N compounds (0 ≤ x ≤ 0.6). Appl. Phys. Lett. 66, 2343–2345 (1995)ADS CrossRef
  • 作者单位:Pragnya P. Mishra (1)
    M. Manivel Raja (2)
    Rabi N. Panda (1)

    1. Department of Chemistry, Birla Institute of Technology and Science, Pilani K.K. Birla, Goa Campus, Zuari Nagar, Goa, 403726, India
    2. Defence Metallurgical Research Laboratory, Hyderabad, 500058, India
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Superconductivity, Superfluidity and Quantum Fluids
    Magnetism and Magnetic Materials
    Condensed Matter
    Characterization and Evaluation Materials
  • 出版者:Springer New York
  • ISSN:1557-1947
文摘
Nanocrystalline ε-Fe3N and γ′-Ni x Fe4−xN (0.2 ≤ x ≤ 0.8) nitride materials are synthesized in pure phase via sol-gel-mediated oxide precursors. The materials are characterized using XRD, SEM (EDX), and magnetic measurements. ε-Fe3N and γ′-Ni x Fe4−x N (0.2 ≤ x ≤ 0.8) materials crystallize in hexagonal and cubic structures, respectively. The lattice parameters are estimated to be a = 4.7812(36) Å and c = 4.4232(31) Å for ε-Fe3N and in the range of 3.7922(10)–3.7957(3) Å for various γ′-Ni x Fe4 −xN (0.2 ≤ x ≤ 0.8) materials. The values of the lattice parameters show increasing trend up to x = 0.6, showing a peak, and thereafter decreases with the increase in Ni weight percent in γ′-Ni x Fe4−xN (0.2 ≤ x ≤ 0.8) materials. The average crystallite sizes are in the range of 31–54 nm and confirm the nanocrystalline nature of the materials. The SEM particle sizes are in the range of 153(7)–250(14) nm. For pure ε-Fe3N, the values of saturation magnetization (M s) and coercivity (H c) are 12 emu/g and 225 Oe, respectively. With the progressive substitution of Ni atoms, hexagonal (ε-phase) changes to cubic (γ′-phase) at the same reaction temperature, which is evident from the increase in M s and H c values, i.e., in the range of 144–181 emu/g and 76–109 Oe, respectively, for γ′-Ni x Fe4 −xN (0.2 ≤ x ≤ 0.8) compounds. The values of the saturation magnetization for γ′-Ni x Fe4 −xN (0.2 ≤ x ≤ 0.8) are found to increase with the increase in Ni content in the materials up to the value of x = 0.6 and decrease thereafter. These results have been interpreted in terms of size and shape effects in nanomaterials including lattice strain and surface effects.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700