Shape and Topology Optimization in Stokes Flow with a Phase Field Approach
详细信息    查看全文
  • 作者:Harald Garcke ; Claudia Hecht
  • 关键词:Shape and topology optimization ; Phase field method ; Diffuse interfaces ; Stokes flow ; Fictitious domain ; 35R35 ; 35Q35 ; 49Q10 ; 49Q20 ; 76D07
  • 刊名:Applied Mathematics and Optimization
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:73
  • 期:1
  • 页码:23-70
  • 全文大小:803 KB
  • 参考文献:1.Ambrosio, L., Buttazzo, G.: An optimal design problem with perimeter penalization. Calc. Var. Partial Differ. Equ. 1(1), 55–69 (1993)MATH MathSciNet CrossRef
    2.Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford (2000)MATH
    3.Bello, J., Fernández-Cara, E., Lemoine, J., Simon, J.: The differentiability of the drag with respect to the variations of a Lipschitz domain in a Navier–Stokes flow. SIAM J. Control Optim. 35(2), 626–640 (1997)MATH MathSciNet CrossRef
    4.Bendsøe, M.P., Haber, R.B., Jog, C.S.: A new approach to variable-topology shape design using a constraint on perimeter. Struct. Multidiscip. Optim. 11(1–2), 1–12 (1996)
    5.Berselli, L.C., Guasoni, P.: Some problems of shape optimization arising in stationary fluid motion. Adv. Math. Sci. Appl. 14(1), 279–293 (2004)MATH MathSciNet
    6.Blank, L., Farshbaf-Shaker, H., Garcke, H., Styles, V.: Relating phase field and sharp interface approaches to structural topology optimization. ESAIM 20(4), 1024–1058 (2014)MathSciNet
    7.Blowey, J.F., Elliott, C.M.: The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy Part I: Mathematical analysis. Eur. J. Appl. Math. 2(03), 233–280 (1991)MATH MathSciNet CrossRef
    8.Borrvall, T., Petersson, J.: Topology optimization of fluids in Stokes flow. Int. J. Numer. Methods Fluids 41(1), 77–107 (2003)MATH MathSciNet CrossRef
    9.Bourdin, B., Chambolle, A.: Design-dependent loads in topology optimization. ESAIM Control Optim. Calc. Var. 9, 19–48 (2003)MATH MathSciNet CrossRef
    10.Brandenburg, C., Lindemann, F., Ulbrich, M., Ulbrich, S.: A continuous adjoint approach to shape optimization for Navier Stokes flow. In K. Kunisch, J. Sprekels, G. Leugering, F. Tröltzsch, (eds.) Optimal Control of Coupled Systems of Partial Differential Equations, volume 158 of Internat. Ser. Numer. Math., pp. 35–56. BirkhSuser (2009)
    11.Brillard, A.: Asymptotic analysis of two elliptic equations with oscillating terms. Modélisation mathématique et analyse numérique 22(2), 187–216 (1988)MATH MathSciNet
    12.Bucur, D., Zolésio, J.P.: N-dimensional shape optimization under capacitary constraint. J. Differ. Equ. 123(2), 504–522 (1995)MATH CrossRef
    13.Buttazzo, G., Dal Maso, G.: Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions. Appl. Math. Optim. 23(1), 17–49 (1991)MATH MathSciNet CrossRef
    14.Buttazzo, G., Giaquinta, M., Hildebrandt, S.: One-dimensional Variational Problems: An Introduction. Oxford Science Publications, Oxford (1998)MATH
    15.Dal Maso, G.: An Introduction to \(\Gamma \) -convergence. Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Boston (1993)
    16.Dal Maso, G., Mosco, U.: Wiener’s criterion and \(\Gamma \) -convergence. Appl. Math. Optim. 15(1), 15–63 (1987)MATH MathSciNet CrossRef
    17.Delfour, M.C., Zolésio, J.P.: Shapes and geometries: analysis, differential calculus, and optimization. In: Advances in Design and Control, Vol. 4. SIAM, Philadelphia (2001)
    18.Delfour, M.C., Zolésio, J.P.: Shape derivatives for nonsmooth domains. In K.-H. Hoffmann, W. Krabs, (eds.) Optimal Control of Partial Differential Equations, volume 149 of Lecture Notes in Control and Information Science, pp. 38–55. Springer (1991)
    19.Delfour, M.C., Zolésio, J.P.: Uniform fat segment and cusp properties for compactness in shape optimization. Appl. Math. Optim. 55(3), 385–419 (2007)MATH MathSciNet CrossRef
    20.Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC PressINC, Boca Raton (1992)MATH
    21.Evgrafov, A.: The limits of porous materials in the topology optimization of Stokes flows. Appl. Math. Optim. 52(3), 263–277 (2005)MATH MathSciNet CrossRef
    22.Evgrafov, A.: Topology optimization of slightly compressible fluids. ZAMM Z. Angew. Math. Mech. 86(1), 46–62 (2006)MATH MathSciNet CrossRef
    23.Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Springer, New York (2011)MATH CrossRef
    24.Garcke, H.: The \(\Gamma \) -limit of the Ginzburg–Landau energy in an elastic medium. AMSA 18, 345–379 (2008)MATH MathSciNet
    25.Garcke, H., Hecht, C.: A phase field approach for shape and topology optimization in Stokes flow. Preprint-Nr.: 09/2014, Universität Regensburg, Mathematik (2014)
    26.Garcke, H., Hecht, C.: Applying a phase field approach for shape optimization of a stationary Navier–Stokes flow. arXiv:​1407.​5470 (to appear in ESAIM Control Optim. Calc. Var. 2015)
    27.Garcke, H., Hecht, C., Hinze, M., Kahle, C.: Numerical approximation of phase field based shape and topology optimization for fluids. arXiv:​1405.​3480 (2014)
    28.Giusti, E.: Minimal surfaces and functions of bounded variation. Notes on pure mathematics. Dept. of Pure Mathematics (1977)
    29.Hecht, C.: Shape and topology optimization in fluids using a phase field approach and an application in structural optimization. Dissertation, University of Regensburg (2014)
    30.Luckhaus, S., Modica, L.: The Gibbs–Thompson relation within the gradient theory of phase transitions. Arch. Ration. Mech. Anal. 107(1), 71–83 (1989)MATH MathSciNet CrossRef
    31.Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Ration. Mech. Anal. 98(2), 123–142 (1987)MATH MathSciNet CrossRef
    32.Mohammadi, B., Pironneau, O.: Shape optimization in fluid mechanics. Annu. Rev. Fluid Mech. 36, 255–279 (2004)MathSciNet CrossRef
    33.Murat, F.: Contre-exemples pour divers probèmes oùle contrôle intervient dans les coefficients. Annali di Matematica Pura ed Applicata 112(1), 49–68 (1977)MATH MathSciNet CrossRef
    34.Pironneau, O.: On optimum profiles in Stokes flow. J. Fluid Mech. 59(01), 117–128 (1973)MATH MathSciNet CrossRef
    35.Plotnikov, P.I., Sokolowski, J.: Shape derivative of drag functional. SIAM J. Control Optim. 48(7), 4680–4706 (2010)MATH MathSciNet CrossRef
    36.Plotnikov, P.I., Sokolowski, J.: Domain dependence of solutions to compressible Navier–Stokes equations. SIAM J. Control Optim. 45(4), 1165–1197 (2006)MATH MathSciNet CrossRef
    37.Schmidt, S., Schulz, V.: Shape derivatives for general objective functions and the incompressible Navier–Stokes equations. Control Cybernet. 39(3), 677–713 (2010)MATH MathSciNet
    38.Showalter, R.E.: Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations. Mathematical surveys and monographs, v. 49. American Mathematical Society (1997)
    39.Simon, J.: Domain variation for drag in Stokes flow. In X. Li and J. Yong, (eds.) Control Theory of Distributed Parameter Systems and Applications, volume 159 of Lecture Notes in Control and Information Science, pp. 28–42. Springer (1991)
    40.Sohr, H.: The Navier–Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser, Boca Raton (2001)CrossRef
    41.Sokolowski, J., Zolésio, J.P.: Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer, Berlin (1992)MATH CrossRef
    42.Sternberg, P.: The effect of a singular perturbation on nonconvex variational problems. Arch. Ration. Mech. Anal. 101(3), 209–260 (1988)MATH MathSciNet CrossRef
    43.Tartar, L.: Problemes de controle des coefficients dans des equations aux derivees partielles. In A. Bensoussan, J.L. Lions, (eds.), Control Theory, Numerical Methods and Computer Systems Modelling, volume 107 of Lecture Notes in Economics and Mathematical Systems, pp 420–426. Springer (1975)
    44.Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. Studies in Mathematics and Its Applications. North-Holland, Amsterdam (1977)MATH
    45.Tröltzsch, F.: Optimale Steuerung partieller Differentialgleichungen. Vieweg, Wiesbaden (2009)MATH CrossRef
    46.Šverák, V.: On optimal design. J. Maths. Pures Appl. 72, 537–551 (1993)MATH
  • 作者单位:Harald Garcke (1)
    Claudia Hecht (1)

    1. Fakultät für Mathematik, Universität Regensburg, 93040, Regensburg, Germany
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Calculus of Variations and Optimal Control
    Systems Theory and Control
    Mathematical and Computational Physics
    Mathematical Methods in Physics
    Numerical and Computational Methods
  • 出版者:Springer New York
  • ISSN:1432-0606
文摘
In this paper we introduce a new formulation for shape optimization problems in fluids in a diffuse interface setting that can in particular handle topological changes. By adding the Ginzburg–Landau energy as a regularization to the objective functional and relaxing the non-permeability outside the fluid region by introducing a porous medium approach we hence obtain a phase field problem where the existence of a minimizer can be guaranteed. This problem is additionally related to a sharp interface problem, where the permeability of the non-fluid region is zero. In both the sharp and the diffuse interface setting we can derive necessary optimality conditions using only the natural regularity of the minimizers. We also pass to the limit in the first order conditions. Keywords Shape and topology optimization Phase field method Diffuse interfaces Stokes flow Fictitious domain

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700