Analysis of carbon and nitrogen co-metabolism in yeast by ultrahigh-resolution mass spectrometry applying 13C- and 15N-labeled substrates simultaneously
详细信息    查看全文
  • 作者:Lars M. Blank (12)
    Rahul R. Desphande (13)
    Andreas Schmid (1)
    Heiko Hayen (45) hayen@uni-wuppertal.de
  • 关键词:13C ; and 15N ; labeling experiment &#8211 ; Mass spectrometry &#8211 ; Yeast &#8211 ; Saccharomyces cerevisiae &#8211 ; Amino acid metabolism
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2012
  • 出版时间:June 2012
  • 年:2012
  • 卷:403
  • 期:8
  • 页码:2291-2305
  • 全文大小:466.5 KB
  • 参考文献:1. Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:62
    2. Szyperski T (1998) C-13-NMR, MS and metabolic flux balancing in biotechnology research. Q Rev Biophys 31:41–106
    3. Wiechert W, de Graaf AA (1996) In vivo stationary flux analysis by 13C labeling experiments. Adv Biochem Eng Biotechnol 54:109–154
    4. Tang YJ, Martin HG, Myers S, Rodriguez S, Baidoo EE, Keasling JD (2009) Advances in analysis of microbial metabolic fluxes via 13C isotopic labeling. Mass Spectrom Rev 28:362–375
    5. Mashego MR, Wu L, Van Dam JC, Ras C, Vinke JL, Van Winden WA, Van Gulik WM, Heijnen JJ (2004) MIRACLE: mass isotopomer ratio analysis of U-C-13-labeled extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotechnol Bioeng 85:620–628
    6. Birkemeyer C, Luedemann A, Wagner C, Erban A, Kopka J (2005) Metabolome analysis: the potential of in vivo labeling with stable isotopes for metabolite profiling. Trends Biotechnol 23:28–33
    7. Wittmann C, Heinzle E (1999) Mass spectrometry for metabolic flux analysis. Biotechnol Bioeng 62:739–750
    8. Wittmann C (2007) Fluxome analysis using GC-MS. Microb Cell Fact 6:6
    9. Wiechert W (2001) C-13 metabolic flux analysis. Metab Eng 3:195–206
    10. Malloy CR, Sherry AD, Jeffrey FMH (1988) Evaluation of carbon flux and substrate selection through alternate pathways involving the citric-acid cycle of the heart by C-13 NMR-spectroscopy. J Biol Chem 263:6964–6971
    11. Zamboni N, Fischer E, Sauer U (2005) FiatFlux—a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinforma 6:209
    12. Wiechert W, M枚llney M, Petersen S, de Graaf AA (2001) A universal framework for 13C metabolic flux analysis. Metab Eng 3:265–283
    13. Noh K, Gronke K, Luo B, Takors R, Oldiges M, Wiechert W (2007) Metabolic flux analysis at ultra short time scale: isotopically non-stationary C-13 labeling experiments. J Biotechnol 129:249–267
    14. Schaub J, Mauch A, Reuss M (2008) Metabolic flux analysis in Escherichia coli by integrating isotopic dynamic and isotopic stationary C-13 labeling data. Biotechnol Bioeng 99:1170–1185
    15. van Winden WA, van Dam JC, Ras C, Kleijn RJ, Vinke JL, van Gulik WM, Heijnen JJ (2005) Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113-7D based on mass isotopomer measurements of C-13-labeled primary metabolites. FEMS Yeast Res 5:559–568
    16. Toya Y, Ishii N, Hirasawa T, Naba M, Hirai K, Sugawara K, Igarashi S, Shimizu K, Tomita M, Soga T (2007) Direct measurement of isotopomer of intracellular metabolites using capillary electrophoresis time-of-flight mass spectrometry for efficient metabolic flux analysis. J Chromatogr A 1159:134–141
    17. Yuan J, Fowler WU, Kimball E, Lu WY, Rabinowitz JD (2006) Kinetic flux profiling of nitrogen assimilation in Escherichia coli. Nat Chem Biol 2:529–530
    18. Engelsberger WR, Erban A, Kopka J, Schulze WX (2006) Metabolic labeling of plant cell cultures with K(15)NO3 as a tool for quantitative analysis of proteins and metabolites. Plant Methods 2:14
    19. Harada K, Fukusaki E, Bamba T, Sato F, Kobayashi A (2006) In vivo 15N-enrichment of metabolites in suspension cultured cells and its application to metabolomics. Biotechnol Prog 22:1003–1011
    20. Schwender J, Shachar-Hill Y, Ohlrogge JB (2006) Mitochondrial metabolism in developing embryos of Brassica napus. J Biol Chem 281:34040–34047
    21. Godin JP, Mermoud AF, Remond D, Faure M, Breuille D, Williamson G, Pere-Trepat E, Ramadan Z, Fay LB, Kochhar S (2009) Simultaneous measurement of 13C- and 15N-isotopic enrichments of threonine by mass spectrometry. Rapid Commun Mass Spectrom 23:1109–1115
    22. Popa R, Weber PK, Pett-Ridge J, Finzi JA, Fallon SJ, Hutcheon ID, Nealson KH, Capone DG (2007) Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J 1:354–360
    23. Pinto DM, Boyd RK, Volmer DA (2002) Ultra-high resolution for mass spectrometric analysis of complex and low-abundance mixtures—the emergence of FTICR-MS as an essential analytical tool. Anal Bioanal Chem 373:378–389
    24. Bergquist J (2003) FTICR mass spectrometry in proteomics. Curr Opin Mol Ther 5:310–314
    25. Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78
    26. Brown SC, Kruppa G, Dasseux JL (2005) Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrom Rev 24:223–231
    27. Pingitore F, Tang Y, Kruppa GH, Keasling JD (2007) Analysis of amino acid isotopomers using FT-ICR MS. Anal Chem 79:2483–2490
    28. Tang YJ, Pingitore F, Mukhopadhyay A, Phan R, Hazen TC, Keasling JD (2007) Pathway confirmation and flux analysis of central metabolic pathways in Desulfovibrio vulgaris hildenborough using gas chromatography–mass spectrometry and Fourier transform-ion cyclotron resonance mass spectrometry. J Bacteriol 189:940–949
    29. Nakamura Y, Kimura A, Saga H, Oikawa A, Shinbo Y, Kai K, Sakurai N, Suzuki H, Kitayama M, Shibata D, Kanaya S, Ohta D (2007) Differential metabolomics unraveling light/dark regulation of metabolic activities in Arabidopsis cell culture. Planta 227:57–66
    30. Southam AD, Payne TG, Cooper HJ, Arvanitis TN, Viant MR (2007) Dynamic range and mass accuracy of wide-scan direct infusion-nanoelectrospray fourier transform ion cyclotron resonance mass spectrometry-based metabolomics increased by the spectral stitching method. Anal Chem 79:4595–4602
    31. Oikawa A, Nakamura Y, Ogura T, Kimura A, Suzuki H, Sakurai N, Shinbo Y, Shibata D, Kanaya S, Ohta D (2006) Clarification of pathway-specific inhibition by Fourier transform ion cyclotron resonance/mass spectrometry-based metabolic phenotyping studies. Plant Physiol 142:398–413
    32. Mungur R, Glass AD, Goodenow DB, Lightfoot DA (2005) Metabolite fingerprinting in transgenic Nicotiana tabacum altered by the Escherichia coli glutamate dehydrogenase gene. J Biomed Biotechnol 2005:198–214
    33. Zamboni N, Fendt S-M, R眉hl M, Sauer U (2009) 13C-based metabolic flux analysis. Nat Protoc 4:878–892
    34. Quek LE, Dietmair S, Kr枚mer JO, Nielsen LK (2010) Metabolic flux analysis in mammalian cell culture. Metab Eng 12:161–171
    35. Verduyn C, Postma E, Scheffers WA, Van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517
    36. Raghevendran V, Gombert AK, Christensen B, K枚tter P, Nielsen J (2004) Phenotypic characterization of glucose repression mutants of Saccharomyces cerevisiae using experiments with 13C-labelled glucose. Yeast 21:769–779
    37. Blank LM, Lehmbeck F, Sauer U (2005) Metabolic flux and network analysis in 14 hemiascomycetous yeasts. FEMS Yeast Res 5:545–558
    38. Heyland J, Fu J, Blank LM (2009) Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae. Microbiology 155:3827–3837
    39. Fischer E, Sauer U (2003) Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur J Biochem 270:880–891
    40. Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361
    41. Dauner M, Sauer U (2000) GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol Prog 16:642–649
    42. Usaite R, Patil KR, Grotkjaer T, Nielsen J, Regenberg B (2006) Global transcriptional and physiological responses of Saccharomyces cerevisiae to ammonium, l-alanine, or l-glutamine limitation. Appl Environ Microbiol 72:6194–6203
    43. Karas M, Bahr U, Dulcks T (2000) Nano-electrospray ionization mass spectrometry: addressing analytical problems beyond routine. Fresenius J Anal Chem 366:669–676
    44. Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68:1–8
    45. Fligge TA, Bruns K, Przybylski M (1998) Analytical development of electrospray and nanoelectrospray mass spectrometry in combination with liquid chromatography for the characterization of proteins. J Chromatogr B Biomed Sci Appl 706:91–100
    46. Marshall AG, Hendrickson CL (2008) High-resolution mass spectrometers. Annu Rev Anal Chem 1:579–599
    47. Col贸n M, Hern谩ndez F, L贸pez K, Quezada H, Gonz谩lez J, L贸pez G, Aranda C, Gonz谩lez A (2011) Saccharomyces cerevisiae Bat1 and Bat2 aminotransferases have functionally diverged from the ancestral-like Kluyveromyces lactis orthologous enzyme. PLoS One 18:e16099
    48. Van Pelt CK, Zhang S, Henion JD (2002) Characterization of a fully automated nanoelectrospray system with mass spectrometric detection for proteomic analyses. Biomol Technol 13:72–84
    49. Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, Hester ET, Jia Y, Juvik G, Roe T, Schroeder M, Weng S, Botstein D (1998) SGD: Saccharomyces Genome Database. Nucleic Acids Res 26:73–79
    50. Garc铆a-Campusano F, Anaya VH, Robledo-Arratia L, Quezada H, Hern谩ndez H, Riego L, Gonz谩lez A (2009) ALT1-encoded alanine aminotransferase plays a central role in the metabolism of alanine in Saccharomyces cerevisiae. Can J Microbiol 55:368–374
  • 作者单位:1. Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44221 Dortmund, Germany2. Institute of Applied Microbiology鈥攊AMB, Aachen Biology and Biotechnology鈥擜BBt, RWTH Aachen University, 52062 Aachen, Germany3. Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA4. Leibniz-Institut f眉r Analytische Wissenschaften-ISAS-e.V, 44139 Dortmund, Germany5. Department of Food Chemistry, University of Wuppertal, Gau脽str. 20, 42119 Wuppertal, Germany
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Food Science
    Inorganic Chemistry
    Physical Chemistry
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1618-2650
文摘
Alternative metabolic pathways inside a cell can be deduced using stable isotopically labeled substrates. One prerequisite is accurate measurement of the labeling pattern of targeted metabolites. Experiments are generally limited to the use of single-element isotopes, mainly 13C. Here, we demonstrate the application of direct infusion nanospray, ultrahigh-resolution Fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS) for metabolic studies using differently labeled elemental isotopes simultaneously—i.e., 13C and 15N—in amino acids of a total protein hydrolysate. The optimized strategy for the analysis of metabolism by a hybrid linear ion trap-FTICR-MS comprises the collection of multiple adjacent selected ion monitoring scans. By limiting both the width of the mass range and the number of ions entering the ICR cell with automated gain control, sensitive measurements of isotopologue distribution were possible without compromising mass accuracy and isotope intensity mapping. The required mass-resolving power of more than 60,000 is only achievable on a routine basis by FTICR and Orbitrap mass spectrometers. Evaluation of the method was carried out by comparison of the experimental data to the natural isotope abundances of selected amino acids and by comparison to GC/MS results obtained from a labeling experiment with 13C-labeled glucose. The developed method was used to shed light on the complexity of the yeast Saccharomyces cerevisiae carbon–nitrogen co-metabolism by administering both 13C-labeled glucose and 15N-labeled alanine. The results indicate that not only glutamate but also alanine acts as an amino donor during alanine and valine synthesis. Metabolic studies using FTICR-MS can exploit new possibilities by the use of multiple-labeled elemental isotopes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700