Manganese and Iron at the Redox Interfaces in the Black Sea, the Baltic Sea, and the Oslo Fjord
详细信息    查看全文
  • 作者:S. Pakhomova (1) s-pakhomova@yandex.ru
    E. V. Yakushev (12)
  • 关键词:Baltic Sea &#8211 ; Black Sea &#8211 ; Iron &#8211 ; Manganese &#8211 ; Oslo fjord &#8211 ; Redox zone
  • 刊名:The Handbook of Environmental Chemistry
  • 出版年:2013
  • 出版时间:2013
  • 年:2013
  • 卷:22
  • 期:1
  • 页码:67-93
  • 全文大小:1.0 MB
  • 参考文献:1. Lewis BL, Landing WM (1991) The biochemistry of manganese and iron in the Black Sea. Deep-Sea Res II 38:S773–S803
    2. Tebo BM (1991) Manganese(II) oxidation in the suboxic zone of the Black Sea. Deep-Sea Res II 38:S883–S905
    3. Canfield DE, Thamdrup B, Kristensen E (2005) Aquatic geomicrobiology. In: Southward AJ, Tyler PA, Young CM, Fuiman LA (eds) Advances in marine biology, 48. Elsevier Academic Press, Amsterdam – Tokio, p 640
    4. Dubinin AV (2005) Geochimiya redkozemelnykh elementov v okeane (Geochemistry of the rare earth elements in the ocean). Naukja, Moscow
    5. Murray JW, Codispoti LA, Friederich GE (1995) Oxidation–reduction environments. The suboxic zone in the Black Sea. In: Huang CP et al (eds) Aquatic chemistry: interfacial and interspecies processes, ACS advances in chemistry series 244, pp 157–176
    6. Yakushev EV, Debolskaya EI (2000) Particulate manganese as a main factor of oxidation of hydrogen sulfide in redox zone of the Black Sea. In: Oceanic fronts and related phenomena. Konstantin Fedorov Memorial Symposium. Pushkin, Saint-Petersburg, Russia. 18–22 May 1998. Proceedings. IOC Workshop Report No. 159. Kluwer Acad. Publ., 2000, pp 592–597
    7. Trouwborst RE, Brian GC, Tebo BM, Glazer BT, Luther GW III (2006) Soluble Mn(III) in Suboxic Zones. Science 313:1955–1957
    8. Tebo BM, Clement BG, Luther GW III, Trouwborst RE, Webb SM, Bargar JR, Parker DL, Sposito G (2005) The mechanism of bacterial manganese(II) oxidation and its implication for maintenance of the suboxic zone in the Black Sea. In: Program and abstracts of international ocean research conference, Paris, France, p 154, 5–10 June 2005
    9. Webb SM, Dick GJ, Bargar JR, Tebo BM (2005) Evidence for the presence of Mn(III) intermediates in the bacterial oxidation of Mn(II). PNAS 102:5558–5563
    10. Kostka JE, Luther GW III, Nealson KH (1995) Chemical and biological reduction of Mn(III)-pyrophosphate complexes: potential importance of dissolved Mn(III) as an environmental oxidant. Geochim et Cosmochim Acta 59:885–894
    11. Ali K, Ashiq U (2004) Study of the kinetics and activation parameters of reduction of Mn(III) to Mn(II) by SO 3 2- ion in (MnSiW11O40H2)5- heteropoly ion. J Iran Chem Soc 1:122–127
    12. Dellwig O, Leipe T, Glockzin M, Marz C, Pollehne F, Schnetger B, Yakushev EV, Brumsack H-J, B枚ttcher ME (2010) A new particulate Mn-Fe-P-shuttle in the water column of anoxic basins. Geochim Cosmochim Acta. doi:10.1016/j.gca.2010.09.017
    13. Krueger S (2004) Operating manual, integrated IOW/MPI PUMP CTD System, IOW, Warnemuende Germany; <Siegfried.Krueger@iowarnemuende.de>
    14. Bordovskiy OK, Chernyakova AM (eds) (1992) Modern methods of the ocean hydrochemical investigations. P.P.Shirshov Institute of Oceanology, Moscow, p 200 (in Russian)
    15. Grashoff K, Kremling K, Ehrhard M (1999) Methods of seawater analysis, 3rd completely revised and extended edition. WILEY-VCH, Weinheim
    16. Hansen HP (1999) Determination of oxygen. In: Grashoff K, Kremling K, Ehrhard M (eds) Methods of seawater analysis 3rd completely revised and extended edition. WILEY-VCH, Weinheim, pp 75&#8211;90
    17. Hansen HP, Koroleff F (1999) Determination of nutrients. In: Grashoff K et al (eds) Methods of seawater analysis, 3rd completely revised and extended edition. WILEY-VC, Weinheim, p 149&#8211;228
    18. Koroleff F, Kremling K (1999) Analysis by spectrophotometry. In: Grashoff K, Kremling K, Ehrhard M (eds) Methods of seawater analysis, 3rd completely revised and extended edition. WILEY-VCH, Weinheim, pp 341&#8211;344
    19. Kononets MYu, Pakhomova SV, Rozanov AG, Proskurnin MA (2002) Determination of soluble iron species in seawater using ferrozine. J Anal Chem 57:704&#8211;708
    20. Yakushev EV, Pollehne F, Jost G, Umlauf L, Kuznetsov I, Schneider B (2007) Analysis of the water column oxic/anoxic interface in the Black and Baltic seas with a Redox-Layer Model. Mar Chem 107:388&#8211;410
    21. Burchard H, Bolding K, Kuhn W, Meister A, Neumann T, Umlauf L (2006) Description of flexible and extendable physical-biogeochemical model system for the water column. J Mar Syst 61:180&#8211;211
    22. Yakushev EV (2011) RedOx layer model. The Handbook of Environmental Chemistry (this volume)
    23. Rozanov AG, Volkov II (2002) Manganese in the Black Sea. In: Complex investigations of the northeastern part of the Black Sea. Nauka, Moscow, p 190&#8211;200 (in Russian)
    24. Yemenicioglu S, Erdogan S, Tugrul S (2006) Distribution of dissolved forms of iron and manganese in the Black Sea. Deep-Sea Res II 53:1842&#8211;1855
    25. Skopintsev BA (1975) Forming of the modern chemical composition of water in the Black Sea. Hydrometizdat, Leningrad (in Russian)
    26. Stumm W, Morgan JJ (1981) Aquatic chemistry. Wiley, New York
    27. Yakushev EV, Chasovnikov VK, Murray JW, Pakhomova SV, Podymov OI, Stunzhas PA (2008) Vertical hydrochemical structure of the Black Sea. In: Kostyanoy AG, Kosarev AN (eds) The Black Sea environment, vol 5, The handbook of environmental chemistry. Springer, Berlin, pp 277&#8211;307
    28. Pakhomova SV, Rozanov AG, Yakushev EV (2009) Dissolved and particulate forms of iron and manganese in the redox zone of the Black Sea. Oceanology 49:773&#8211;787
    29. Stunzhas PA, Yakushev EV (2006) Fine hydrochemical structure of the redox zone in the Black Sea according to the results of measurements with an open oxygen sensor and with bottle samplers. Oceanology 46:629&#8211;641
    30. Stunzhas PA (2000) On the structure of the interaction zone of aerobic and anaerobic water in the Black Sea on the base of measurements by membrane-free oxygen sensor. Oceanology 40:503&#8211;509
    31. Bashturk O, Volkov II, Gekman S, Gungor H, Romanov AS, Yakushev EV (1998) International expedition on R/V Bilim in July 1997 in the Black sea. Oceanology 38:473&#8211;476
    32. Neretin L, Pohl C, Jost G, Leipe T, Pollehne F (2003) Manganese cycling at the oxic/anoxic interface in the Gotland deep, Baltic Sea. Mar Chem 82:125&#8211;143
    33. Volkov II, Kontar EA, Lukashev YuF, Neretin LN, Niffeler F, Rozanov AG (1997) The upper boundary of hydrogen sulfide and redox nefeloid layer in water of the Caucasian slope in the Black Sea. Geochemistry 7:540&#8211;550
    34. Kamyshny A Jr, Yakushev EV, Jost G, Podymov OI (2011) Role of Sulfide Oxidation Intermediates in the Redox Balance of the Oxic-Anoxic Interface of the Gotland Deep, Baltic Sea. The Handbook of Environmental Chemistry. doi:10.1007/698_2010_83
    35. Gloe A, Pfennig N, Brockmann H, Trowitzsch W (1975) A new bacteriochlorophyll from brown-colored Chlorobiaceae. Arch Microbiol 102:103&#8211;109
    36. Yakushev E, Pakhomova S, S酶renson K, Skei J (2009) Importance of the different manganese species in the formation of water column redox zones: observations and modeling. Mar Chem 117:59&#8211;70
    37. S酶rensen K (1988) The distribution and biomass of phytoplankton and phototrophic bacteria in Framvaren, a permanently anoxic fjord in Norway. Mar Chem 23:229&#8211;241
    38. Ozturk M (1995) Trends of trace metal (Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb) distributions at the oxic-anoxic interface and in sulfidic water of the Drammensfjord. Mar Chem 48:329&#8211;342
    39. Pohl C, Loffler A, Hennings U (2004) A sediment trap study for trace metals under seasonal aspects in the stratified Baltic Sea (Gotland Basin; 57潞19.20’N; 20潞03.00’E). Mar Chem 84:143&#8211;160
    40. Jost G, Clement B, Pakhomova SV, Yakushev EV (2007) Field studies of anoxic conditions in the Baltic Sea during the cruise of R/V Professor Albrecht Penck in July 2006. Oceanology 47:590&#8211;593
    41. Yakushev EV, Vinogradova EL, Dubinin AV, Kostyleva AV, Pakhomova SV (2011) On the determination of low oxygen concentrations with Winkler technique. Oceanology (in press)
    42. Lewis BL, Holt PD, Taylor SW, Wilhelm SW, Trick CG, Butler A, Luther GW III (1995) Voltammetric estimation of iron(III) thermodynamic stability constants for catecholate siderophores isolated from marine bacteria and cyanobacteria. Mar Chem 50:176&#8211;188
    43. Spenser DW, Brewer PG (1972) Aspect of the distribution and trace element composition of suspended matter in the Black Sea. Geochim Cosmochim Acta 36:71&#8211;86
    44. Haraldsson C, Westerlund S (1988) Trace metals in the water columns of the Black Sea and Framvaren Fjord. Mar Chem 23:417&#8211;424
    45. Swarzenski PW, McKee BA, S酶rensen K, Todd JF (1999) 210Pb and 210Po, manganese and iron cycling across the O2/H2S interface of a permanently anoxic fjord: Framvaren, Norway. Mar Chem 67:199&#8211;217
    46. Lewis BL, Glazer BT, Montbriand PJ, Luther GW, Nuzzio DB, Deering T, Ma S, Theberge S (2007) Short-term and interannual variability of redox-sensitive chemical parameters in hypoxic/anoxic bottom waters of the Chesapeake Bay. Mar Chem 105:296&#8211;308
    47. Rue EL, Bruland KW (1995) Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar Chem 50:117&#8211;138
    48. Van den Berg CMG (1995) Evidence for organic complexation of iron in seawater. Mar Chem 50:139&#8211;157
    49. Powell RT, Landing WM, Bauer JE (1996) Colloidal trace metals, organic carbon and nitrogen in a southeastern U.S. estuary. Mar Chem 55:165&#8211;176
  • 作者单位:1. P.P.Shirshov Institute of Oceanology of the Russian Academy of Sciences (SIO RAS), 36, Nakhimovskiy Pr., 109017 Moscow, Russia2. Norwegian Institute for Water Researches (NIVA), Gaustadall茅en 21, 0349 Oslo, Norway
文摘
The joint analysis of the data of manganese and iron species distributions (dissolved Mn, dissolved bound Mn, dissolved Fe(II) and Fe(III), particulate Fe and Mn) obtained in the Black Sea, the Baltic Sea, and the Oslo Fjord allowed to reveal the common features that testify the similarity of the mechanism of the redox layer biogeochemical structure formation in these regions. Our investigations demonstrated that Mn bound in stable complexes with hypothetically organic matter or pyrophosphate is observed in the redox zones in significant concentrations (up to 2 μM), and is likely presented by Mn(III), an intermediate product of Mn(II) oxidation and Mn(IV) reduction. This bound Mn(III) can explain phosphate distribution in redox interfaces &#8211; formation of so-called phosphate dipole with a minimum above the sulfidic boundary and a maximum just below, and with a steep increase in the concentrations between these two. This dipole structure serves as a geochemical barrier that decreases the upward flux of phosphate from the anoxic layer. On the base of the recent data obtained in the 100th cruise of RV “Professor Shtokman” (March to April, 2009), it was found that the bound Mn could exist in two forms &#8211; colloidal (0.02&#8211;0.40 μm) and truly dissolved (<0.02 μm) that perhaps result from complexing with different types of ligands. The flushing events, river input, sporadically increased mixing, and anoxygenic photosynthesis affect the distributions of the redox zone parameters. Response time for changes in the microbial processes involved in reduction and/or reoxidation of Mn and Fe lags behind that for oxygen injection into water. Concentrations of redox-sensitive species of Mn and Fe should thus be useful as a tracer to inter prior hypoxic/anoxic conditions not apparent from oxygen levels at the time of sampling. Modeling results showed that the manganese cycle [formation of sinking down Mn(IV) and presence of dissolved Mn(III)] is the main reason of oxygen and hydrogen sulfide direct contact absence. Modeling allowed to study the role of affecting factors in the formation of the observed distributions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700