Valproic acid affected the survival and invasiveness of human glioma cells through diverse mechanisms
详细信息    查看全文
  • 作者:Yun Chen (12) ychen@mail.femh.org.tw
    Ya-Hui Tsai (12) yahuitsai@gmail.com
    Sheng-Hong Tseng (3) tsh5110@ntu.edu.tw
  • 关键词:Valproic acid &#8211 ; RECK &#8211 ; Invasiveness &#8211 ; Mitogen ; activated protein kinase &#8211 ; Glioma cells
  • 刊名:Journal of Neuro-Oncology
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:109
  • 期:1
  • 页码:23-33
  • 全文大小:636.9 KB
  • 参考文献:1. Chang SM, Parney IF, Huang W, Anderson FA Jr, Asher AL, Bernstein M, Lillehei KO, Brem H, Berger MS, Laws ER (2005) Glioma outcomes project investigators, patterns of care for adults with newly diagnosed malignant glioma. JAMA 293:557–564
    2. Demuth T, Berens ME (2004) Molecular mechanisms of glioma cell migration and invasion. J Neurooncol 70:217–228
    3. Nakada M, Nakada S, Demuth T, Tran NL, Hoelzinger DB, Berens ME (2007) Molecular targets of glioma invasion. Cell Mol Life Sci 64:458–478
    4. Hrebackova J, Hrabeta J, Eckschlager T (2010) Valproic acid in the complex therapy of malignant tumors. Curr Drug Ther 11:361–379
    5. Furchert SE, Lanvers-Kaminsky C, Juurgens H, Jung M, Loidl A, Fruhwald MC (2007) Inhibitors of histone deacetylase as potential therapeutic tools for high-risk embryonal tumors of the nervous system of childhood. Int J Cancer 120:1787–1794
    6. Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, Yang H, Rosner G, Verstovsek S, Rytting M, Wierda WG, Ravandi F, Koller C, Xiao L, Faderl S, Estrov Z, Cortes J, O’brien S, Estey E, Bueso-Ramos C, Fiorentino J, Jabbour E, Issa JP (2006) Phase 1/2 study of the combination of 5-aza-2′-deoxycytodine with valproic acid in patients with leukemia. Blood 108:3271–3279
    7. Munster P, Marchion D, Bicaku E, Schmitt M, Lee JH, DeConti R, Simon G, Fishman M, Minton S, Garrett C, Chiappori A, Lush R, Sullivan D, Daud A (2007) Phase 1 trial of histone deacetylase inhibition by valproic acid followed by the topoisomerase II inhibitor epirubicin in advanced solid tumors: a clinical and translational study. J Clin Oncol 25:1979–1985
    8. Yang Q, Tian Y, Liu S, Zeine R, Chlenski A, Salwen HR, Henkin J, Cohn SL (2007) Thrombospondin-1 peptide ABT-510 combined with valproic acid is an effective antiangiogenesis strategy in neuroblastoma. Cancer Res 67:1716–1724
    9. Duenas-Gonzalez A, Gandelaria M, Perez-Plascencia-Cardenas E, Perez-Cardenas E, de la Cruz-Hernandez E, Herrera LA (2008) Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat Rev 34:206–222
    10. Michaelis M, Doerr HW, Cinatl J Jr (2007) Valproic acid as anti-cancer drug. Curr Pharm Des 13:3378–3393
    11. van Breemen MSM, Rijsman RM, Taphoorn MJB, Walchenbach R, Zwinkels H, Vecht CJ (2009) Efficacy of anti-epileptic drugs in patients with gliomas and seizures. J Neurol 256:1519–1526
    12. Wolff JE, Kramm C, Kortmann RD, Pietsch T, Rutkowski S, Jorch N, Gnekow A, Driever PH (2008) Valproic acid was well tolerated in heavily pretreated pediatric patients with high-grade glioma. J Neurooncol 90:309–314
    13. Weller M, Gorlia T, Cairncross JG, van den Bent MJ, Mason W, Belanger K, Brandes AA, Bogdahn U, Macdonald DR, Forsyth P, Rossetti AO, Lacombe D, Mirimanoff RO, Vecht CJ, Stupp R (2011) Prolonged survival with valproic acid use in the EORTC/NCIC temozolomide trial for glioblastoma. Neurology 77:1156–1164
    14. Oberndorfer S, Piribauer M, Marosi C, Lahrmann H, Hitzenberger P, Grisold W (2005) P450 enzyme inducing and non-enzyme inducing antiepileptics in gliobasltoma patients treated with standard chemotherapy. J Neurooncol 72:255–260
    15. Jaeckle KA, Ballman K, Furth A, Buckner JC (2009) Correlation of enzyme-inducing anticonvulsant use with outcome of patients with glioblastoma. Neurology 73:1207–1213
    16. Gotfryd K, Skladchikova G, Lepekhin EA, Berezin V, Bock E, Walmod PS (2010) Cell type-specific anti-cancer properties of valproic acid: independent effects on HDAC activity and Erk1/2 phosphorylation. BMC Cancer 10:383
    17. Stockhausen MT, Sjolund J, Manetopoulos C, Axelson H (2005) Effects of the histone deacetylase inhibitor valproic acid on Notch signaling in human neuroblastoma cells. Br J Cancer 92:751–759
    18. Ailenberg M, Silverman M (2002) Trichostatin A-histone deacetylase inhibitor with clinical therapeutic potential—is a selective and potent inhibitor of gelatinase A expression. Biochem Biophys Res Commun 298:110–115
    19. Chang HC, Liu LT, Hung WC (2004) Involvement of histone deacetylation in ras-induced down-regulation of the metastasis suppressor RECK. Cell Signal 16:675–679
    20. Liu LT, Chang HC, Chiang LC, Hung WC (2003) Histone deacetylase inhibitor up-regulates RECK to inhibit MMP-2 activation and cancer cell invasion. Cancer Res 63:3069–3072
    21. Noda M, Oh J, Takahashi R, Kondo S, Kitayama H, Takahashi C (2003) RECK: a novel suppressor of malignancy linking oncogenic signaling to extracellular matrix remodeling. Cancer Metastasis Rev 22:167–175
    22. Chang HC, Cho CY, Hung WC (2007) Downregulation of RECK by promoter methylation correlates with lymph node metastasis in non-small cell lung cancer. Cancer Sci 98:169–173
    23. Furumoto K, Arii S, Mori A, Furuyama H, Gorrin Rivas MJ, Nakao T, Isobe N, Murata T, Takahashi C, Noda M, Imamura M (2001) RECK gene expression in hepatocellular carcinoma: correlation with invasion-related clinicopathological factors and its clinical significance. Reverse-reducing-cysteine-rich protein with Kazal motifs. Hepatology 33:189–195
    24. Kang HG, Kim HS, Kim KJ, Oh JH, Lee MR, Seol SM, Han I (2007) RECK expression in osteosarcoma: correlation with matrix metalloproteinases activation and tumor invasiveness. J Orthop Res 25:696–702
    25. Masui T, Doi R, Koshiba T, Fujimoto K, Tsuji S, Nakajima S, Koizumi M, Toyoda E, Tulachan S, Ito D, Kami K, Mori T, Wada M, Noda M, Imamura M (2003) RECK expression in pancreatic cancer: its correlation with lower invasiveness and better prognosis. Clin Cancer Res 9:1779–1784
    26. Rabien A, Burkhardt M, Jung M, Fritzsche F, Ringsdorf M, Schicktanz H, Loening SA, Kristiansen G, Jung K (2007) Decreased RECK expression indicating proteolytic imbalance in prostate cancer is associated with higher tumor aggressiveness and risk of prostate-specific antigen relapse after radical prostatectomy. Eur Urol 51:1259–1266
    27. Song SY, Son HJ, Nam E, Rhee JC, Park C (2006) Expression of reversion-inducing-cysteine-rich protein with Kazal motifs as a prognostic indicator in gastric cancer. Eur J Cancer 42:101–108
    28. Span PN, Sweep CG, Manders P, Beex LV, Leppert D, Lindberg RL (2003) Matrix metalloproteinase inhibitor reversion-inducing cysteine-rich protein with Kazal motifs: a prognostic marker for good clinical outcome in human breast carcinoma. Cancer 97:2710–2715
    29. Van der Jagt MF, Sweep FC, Waas ET, Hendriks T, Ruers TJ, Merry AH, Wobbes T, Span PN (2006) Correlation of reversion-inducing cysteine-rich protein with kazal motifs (RECK) and extracellular matrix metalloproteinase inducer (EMMPRIN), with MMP-2, MMP-9, and survival in colorectal cancer. Cancer Lett 237:289–297
    30. Sasahara RM, Brochado SM, Takahashi C, Oh J, Maria-Engler SS, Granjeiro JM, Noda M, Sogayar MC (2002) Transcriptional control of the RECK metastasis/angiogenesis suppressor gene. Cancer Detect Prev 26:435–443
    31. Yoon SO, Park SJ, Yun CH, Chung AS (2003) Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. J Biochem Mol Biol 36:128–137
    32. Silveira Correa TC, Massaro RR, Brohem CA, Taboga SR, Lamers ML, Santos MF, Maria-Engler SS (2010) RECK-mediated inhibition of glioma migration and invasion. J Cell Biochem 110:52–61
    33. Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, Krichevsky AM (2008) MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28:5369–5380
    34. Silveira Correa TC, Brohem CA, Winnischofer SM, da Silva Cardeal LB, Sasahara RM, Taboga SR, Sogayar MC, Maria-Engler SS (2006) Downregulation of the RECK-tumor and metastasis suppressor gene in glioma invasiveness. J Cell Biochem 99:256–267
    35. Meloche S, Pouyssegur J (2007) The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 26:3227–3239
    36. Yoon S, Seger R (2006) The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24:21–44
    37. Krishna M, Narang H (2008) The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci 65:3525–3544
    38. Zohrabian VM, Forzani B, Chau Z, Murali R, Jhanwar-Uniyal M (2009) Rho/ROCK and MAPK signaling pathways are involved in glioblastoma cell migration and proliferation. Anticancer Res 29:119–124
    39. Annabi B, Thibeault S, Moumdjian R, B茅liveau R (2004) Hyaluronan cell surface binding is induced by type I collagen and regulated by caveolae in glioma cells. J Biol Chem 279:21888–21896
    40. Yuan PX, Huang LD, Jiang YM, Gutkind JS, Manji HK, Chen G (2001) The mood stabilizer valproic acid activates mitogen-activated protein kinases and promote neurite growth. J Biol Chem 276:31674–31683
    41. Wang AH, Wei L, Chen L, Zhao SQ, Wu WL, Shen ZX, Li JM (2011) Synergistic effect of bortezomib and valproic acid treatment on the proliferation and apoptosis of acute myeloid leukemia and myelodysplastic syndrome cells. Ann Hematol 90:917–931
    42. Van Nifterik KA, Van den Berg J, Slotman BJ, Lafleur MV, Sminia P, Stalpers LJ (2012) Valproic acid sensitizes human glioma cells for temozolomide and γ-radiation. J Neurooncol 107:61–67
  • 作者单位:1. Department of Surgery, Far Eastern Memorial Hospital, Pan-Chiao, New Taipei, Taiwan2. Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan3. Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100 Taiwan
  • ISSN:1573-7373
文摘
The effects of valproic acid (VPA) on the viability, apoptosis, and invasiveness of two glioma cells (A172 and T98G) and the underlying mechanisms were studied. VPA induced cytotoxicity and apoptosis, and suppressed the invasiveness of both cells. VPA increased the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9 in A172 cells, but decreased it in T98G cells. siRNA blockade of reversion-inducing cysteine-rich protein with Kazal motifs (RECK) expression partially reversed VPA-mediated effects in T98G cells, but had no effect on A172 cells. VPA increased the expression of phospho-JNK1 and phospho-ERK1/2 in A172 cells, but decreased it in T98G cells. Inhibition of JNK1 and/or ERK1/2 partially reversed the VPA effects in A172 cells. In conclusion, the effects of VPA (loss of viability, increased apoptosis, and decreased invasiveness) are, at least partly, mediated through the RECK-MMPs pathway in T98G cells and the mitogen-activated protein kinase pathways in A172 cells. The action of VPA seems to be cell type-specific in glioma cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700