Design and preparation of open circuit potential biosensor for in vitro and in vivo glucose monitoring
详细信息    查看全文
  • 作者:Yonggui Song ; Dan Su ; Yuan Shen ; Hongyu Liu&#8230
  • 关键词:Open circuit potential ; Glucose ; Macroporous carbon ; Glucose oxidase
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:409
  • 期:1
  • 页码:161-168
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Analytical Chemistry; Biochemistry, general; Laboratory Medicine; Characterization and Evaluation of Materials; Food Science; Monitoring/Environmental Analysis;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1618-2650
  • 卷排序:409
文摘
A novel open circuit potential biosensor (OCPS) composed of a working electrode and a Ag/AgCl reference electrode was designed for in vivo continuous glucose monitoring in this work. The macroporous carbon derived from kenaf stem (KSC) was used to construct a KSC microelectrode (denoted as KSCME) which was subsequently used to load glucose oxidase (GOD) as the working electrode. The resulting GOD/KSCMEs could catalyze the oxidation of glucose directly to result in changes of the open circuit potential (Voc) of the OCPS. The Voc of OCPS was dependent on the glucose concentration, showing a linear range of 0.03–10.0 mM (R = 0.999) with a detection limit of 10 μM. In addition, the OCPS exhibited good selectivity for glucose over other common endogenous interferences. The feasibility of the proposed OCPS for glucose detection in mice skin tumors and normal tissue homogenate samples (in vitro experiment) and rat subcutaneous glucose monitoring (in vivo experiment) was also demonstrated with satisfactory results. The biosensor represents a novel example of a superficial cancer diagnostic device, and the proposed OCPS also provides new ideas for the development of a simple and highly selective device for continuous glucose sensing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700