Possible environmental risks at commercial growing transgenic forage crops
详细信息    查看全文
  • 作者:V. M. Kosolapov (1)
    Yu. V. Chesnokov (2)

    1. All-Russian Williams Fodder Research Institute
    ; Lobnya ; Moscow oblast ; Russia
    2. All-Russian Vavilov Research Institute of Plant Industry
    ; ul. Bol鈥檚haya Morskaya 44 ; St. Petersburg ; 190000 ; Russia
  • 关键词:transgenic forage crops ; spatial pollen spreading ; genetic contamination ; possible environmental risks
  • 刊名:Russian Journal of Plant Physiology
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:62
  • 期:2
  • 页码:143-152
  • 全文大小:171 KB
  • 参考文献:1. Dunwell, J.M., Transgenic crops: the next generation, or an example of 2020 vision, / Ann. Bot., 1999, vol. 84, pp. 269鈥?77. CrossRef
    2. Dunwell, J.M., Future prospects for transgenic crops, / Phytochem. Rev., 2002, vol. 1, pp. 1鈥?2. CrossRef
    3. Yan, L. and Kerr, P.S., Genetically engineered crops: their potential use for improvement of human nutrition, / Nutr. Rev., 2002, vol. 60, pp. 135鈥?41. CrossRef
    4. Danilova, S.A., The technologies for genetic transformation of cereals, / Russ. J. Plant Physiol., 2007, vol. 54, pp. 569鈥?81. CrossRef
    5. Rukavtsova, E.B., Lebedeva, A.A., Zakharchenko, N.S., and Bur鈥檡anov, Ya.I., The ways to produce biologically safe marker-free transgenic plants, / Russ. J. Plant Physiol., 2013, vol. 60, pp. 14鈥?6. CrossRef
    6. Kulikov, A.M., Genetically modified organisms and risks of their introduction, / Russ. J. Plant Physiol., 2005, vol. 52, pp. 99鈥?11. CrossRef
    7. Viktorov, A.G., Influence of Bt-plants on soil biota and pleiotropic effect of 未-endotoxin-encoding genes, / Russ. J. Plant Physiol., 2008, vol. 55, pp. 738鈥?47. CrossRef
    8. Chesnokov, Yu.V., GMO and plant genetic resources: ecological and agronomic safety, / Vavilovskii Zhurn. Genetiki i Selektsii, 2011, vol. 15, pp. 818鈥?27.
    9. Kuznetsov, Vl.V. and Kulikov, A.M., Genetically modified organisms and derived products: real and potential risks, / Ros. Khim. Zhurn. (Zhurn. Ros. Khim. Ob-va im. D.I. Mendeleeva), 2005, vol. 49, pp. 70鈥?3.
    10. Kuznetsov, V.V., Tsydendambaev, V.D., Kuznetsov, Vl.V., and Kulikov, A.M., Genetically modified organisms: real and potential risks, / Biologiya dlya Shkol鈥檔ikov, 2011, no. 1, pp. 24鈥?3.
    11. Zhuchenko, A.A., / Adaptivnoe rastenievodstvo (ekologogeneticheskie osnovy). Teoriya i praktika (Adaptive Crop Production: Ecological and Genetic Basics. Theory and Practice), Moscow: Agrorus, 2009, vol. 2.
    12. James, C., / Global status of commercialized Biotech/GM crops: 2013, ISAAA, brief no. 46, New York: Ithaca, 2013.
    13. Watrud, L.S., Lee, E.H., Fairbrother, A., Burdick, C., Reichman, J.R., Bollman, M., Storm, M., King, G.J., and van de Water, P.K., Evidence for landscape level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker, / Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 14533鈥?4538. CrossRef
    14. Waltz, E., Industry exhales as USDA okays glyphosate-resistant alfalfa, / Nat. Biotech., 2011, vol. 29, pp. 179鈥?81. CrossRef
    15. Wang, Z.Y., Takamizo, T., Iglesias, V.A., Osusky, M., Nagel, J., Potrykus, I., and Spangenberg, G., Transgenic plants of tall fescue ( / Festuca arundinacea Schreb.) obtained by direct gene transfer to protoplasts, / Nat. Biotech., 1992, vol. 10, pp. 691鈥?96. CrossRef
    16. Waltz, E., GM grass eludes outmoded USDA oversight, / Nat. Biotech., 2011, vol. 29, pp. 772鈥?73. CrossRef
    17. Johnson, P.G., Larson, S.R., Anderton, A.L., Patterson, J.T., Cattani, D.J., and Nelson, E.K., Pollen-mediated gene flow from Kentucky bluegrass under cultivated field conditions, / Crop Sci., 2006, vol. 46, pp. 1990鈥?997. CrossRef
    18. Bae, T.W., Vanjildorj, E., Song, S.Y., Nishiguchi, S., Yang, S.S., Song, I.J., Chandrasekhar, T., Kang, T.W., Kim, J.I., Koh, Y.J., Park, S.Y., Lee, J., Lee, Y.E., Ryu, K.H., Riu, K.Z., Song, P.S., and Lee, H.Y., Environmental risk assessment of genetically engineered herbicide-tolerant / Zoysia japonica, / J. Environ. Quality, 2008, vol. 37, pp. 207鈥?18. CrossRef
    19. Guo, D.J., Chen, F., Wheeler, J., Winder, J., Selman, S., Peterson, M., and Dixon, R.A., Improvement of inrumen digestibility of alfalfa forage by genetic manipulation of lignin O-methyltransferases, / Transgenic Res., 2001, vol. 10, pp. 457鈥?64. CrossRef
    20. Chen, L., Auh, C., Dowling, P., Bell, J., Chen, F., Hopkins, A., Dixon, R.A., and Wang, Z.Yu., Improved forage digestibility of tall fescue ( / Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase, / Plant Biotech. J., 2003, vol. 1, pp. 437鈥?49. CrossRef
    21. Chen, L., Auh, C., Dowling, P., Bell, J., Lehmann, D., and Wang, Z.Y., Transgenic down-regulation of caffeic acid O-methyltransferase (COMT) led to improved digestibility in tall fescue ( / Festuca arundinacea), / Funct. Plant Biol., 2004, vol. 31, pp. 235鈥?45. CrossRef
    22. Reddy, M.S.S., Chen, F., Shadle, G., Jackson, L., Aljoe, H., and Dixon, R.A., Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa ( / Medicago sativa L.), / Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 16 573鈥?6 578. CrossRef
    23. Tu, Y., Rochfort, S., Liu, Z., Ran, Y., Griffith, M., Badenhorst, P., Louie, G.V., Bowman, M.E., Smith, K.F., Noel, J.P., Mouradov, A., and Spangenberg, G., Functional analyses of caffeic acid O-methyltransferase and cinnamoyl-CoA-reductase genes from perennial ryegrass ( / Lolium perenne), / Plant Cell, 2010, vol. 22, pp. 3357鈥?373. CrossRef
    24. Zhang, J.Y., Broeckling, C.D., Blancaflor, E.B., Sledge, M., Sumner, L.W., and Wang, Z.Y., Overexpression of WXP1, a putative / Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa ( / Medicago sativa), / Plant J., 2005, vol. 42, pp. 689鈥?07. CrossRef
    25. Zhang, J.Y., Broeckling, C., Sumner, L.W., and Wang, Z.Y., Heterologous expression of two / Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance, / Plant Mol. Biol., 2007, vol. 64, pp. 265鈥?78. CrossRef
    26. Fu, D., Huang, B., Xiao, Y., Muthukrishnan, S., and Liang, G., Overexpression of barley / hva1 gene in creeping bentgrass for improving drought tolerance, / Plant Cell Rep., 2007, vol. 26, pp. 467鈥?77. CrossRef
    27. Jiang, Q., Zhang, J.Y., Guo, X., Monteros, M., and Wang, Z.Y., Physiological characterization of transgenic alfalfa ( / Medicago sativa) plants for improved drought tolerance, / Int. J. Plant Sci., 2009, vol. 170, pp. 969鈥?78. CrossRef
    28. Jiang, Q., Zhang, J., Guo, X., Bedair, M., Sumner, L., Bouton, J., and Wang, Z.Y., Improvement of drought tolerance in white clover ( / Trifolium repens) by transgenic expression of a transcription factor gene WXP1, / Funct. Plant Biol., 2010, vol. 37, pp. 157鈥?65. CrossRef
    29. Xiong, X., James, V., Zhang, H., and Altpeter, F., Constitutive expression of the barley HvWRKY38 transcription factor enhances drought tolerance in turf and forage grass ( / Paspalum notatum Flugge), / Mol. Breed., 2010, vol. 25, pp. 419鈥?32. CrossRef
    30. Ma, X.F., Wright, E., Ge, Y., Bell, J., Xi, Y., Bouton, J.H., and Wang, Z.Y., Improving phosphorus acquisition of white clover ( / Trifolium repens L.) by transgenic expression of plant-derived phytase and acid phosphatase genes, / Plant Sci., 2009, vol. 76, pp. 479鈥?88. CrossRef
    31. Ma, X.F., Tudor, S., Butler, T., Ge, Y., Xi, Y., Bouton, J., Harrison, M., and Wang, Z.Y., Transgenic expression of phytase and acid phosphatase genes in alfalfa ( / Medicago sativa) leads to improved phosphate uptake in natural soils, / Mol. Breed., 2012, vol. 30, pp. 377鈥?91. CrossRef
    32. Wu, Y.Y., Chen, Q.J., Chen, M., and Chen, J., Salt-tolerant transgenic perennial ryegrass ( / Lolium perenne L.) obtained by / Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+ antiporter gene, / Plant Sci., 2005, vol. 169, pp. 65鈥?3. CrossRef
    33. Li, Z., Baldwin, C.M., Hu, Q., Liu, H., and Luo, H., Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass ( / Agrostis stolonifera L.), / Plant Cell Environ., 2010, vol. 33, pp. 272鈥?89. CrossRef
    34. Hu, Y., Jia, W., Wang, J., Zhang, Y., Yang, L., and Lin, Z., Transgenic tall fescue containing the / Agrobacterium tumefaciens ipt gene shows enhanced cold tolerance, / Plant Cell Rep., 2005, vol. 23, pp. 705鈥?09. CrossRef
    35. Hisano, H., Kanazawa, A., Kawakami, A., Yoshida, M., Shimamoto, Y., and Yamada, T., Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing, / Plant Sci., 2004, vol. 167, pp. 861鈥?68. CrossRef
    36. Jensen, C.S., Salchert, K., Gao, C., Andersen, C., Didion, T., and Nielsen, K.K., Floral inhibition in red fescue ( / Festuca rubra L.) through expression of a heterologous flowering repressor from / Lolium, / Mol. Breed., 2004, vol. 13, pp. 37鈥?8. CrossRef
    37. Petrovska, N., Wu, X., Donato, R., Wang, Z., Ong, E.K., Jones, E., Forster, J., Emmerling, M., Sidoli, A., O鈥橦ehir, R., and Spangenberg, G., Transgenic ryegrasses ( / Lolium spp.) with down-regulation of main pollen allergens, / Mol. Breed., 2004, vol. 14, pp. 489鈥?01. CrossRef
    38. Tesfaye, M., Temple, S.J., Allan, D.L., Vance, C.P., and Samac, D.A., Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum, / Plant Physiol., 2001, vol. 127, pp. 1836鈥?844. CrossRef
    39. Barone, P., Rosellini, D., La Fayette, P., Bouton, J., Veronesi, F., and Parrott, W., Bacterial citrate synthase expression and soil aluminum tolerance in transgenic alfalfa, / Plant Cell Rep., 2008, vol. 27, pp. 893鈥?01. CrossRef
    40. Calderini, O., Bovone, T., Scotti, C., Pupilli, F., Piano, E., and Arcioni, S., Delay of leaf senescence in / Medicago sativa transformed with the / ipt gene controlled by the senescence-specific promoter SAG12, / Plant Cell Rep., 2007, vol. 26, pp. 611鈥?15. CrossRef
    41. Zhou, C., Han, L., Pislariu, C., Nakashima, J., Fu, C., Jiang, Q., Quan, L., Blancaflor, E.B., Tang, Y., Bouton, J.H., Udvardi, M., Xia, G., and Wang, Z., From model to crop: functional analysis of a STAY-GREEN gene in the model legume / Medicago truncatula and effective use of the gene for alfalfa ( / M. sativa) improvement, / Plant Physiol., 2011, vol. 157, pp. 1483鈥?496. CrossRef
    42. Xu, J.P., Schubert, J., and Altpeter, F., Dissection of RNA-mediated ryegrass mosaic virus resistance in fertile transgenic perennial ryegrass ( / Lolium perenne L.), / Plant J., 2001, vol. 26, pp. 265鈥?74. CrossRef
    43. Ludlow, E.J., Mouradov, A., and Spangenberg, G.C., Post-transcriptional gene silencing as an efficient tool for engineering resistance to white clover mosaic virus in white clover ( / Trifolium repens), / J. Plant Physiol., 2009, vol. 166, pp. 1557鈥?567. CrossRef
    44. Fu, D., Tisserat, N.A., Xiao, Y., Settle, D., Muthukrishnan, S., and Liang, G.H., Overexpression of rice TLPD34 enhances dollar-spot resistance in transgenic bentgrass, / Plant Sci., 2005, vol. 168, pp. 671鈥?80. CrossRef
    45. Dong, S., Tredway, L.P., Shew, H.D., Wang, G., Sivamani, E., and Qu, R., Resistance of transgenic tall fescue to two major fungal diseases, / Plant Sci., 2007, vol. 173, pp. 501鈥?09. CrossRef
    46. Dong, S., Shew, H.D., Tredway, L.P., Lu, J., Sivamani, E., Miller, E.S., and Qu, R., Expression of the bacteriophage T4 lysozyme gene in tall fescue confers resistance to gray leaf spot and brown patch diseases, / Transgenic Res., 2008, vol. 17, pp. 47鈥?7. CrossRef
    47. Zhou, M., Hu, Q., Li, Z., Li, D., Chen, C.F., and Luo, H., Expression of a novel antimicrobial peptide penaeidin4-1 in creeping bentgrass ( / Agrostis stolonifera L.) enhances plant fungal disease resistance, / PLoS ONE, 2011, vol. 6: e24677.
    48. Agharkar, M., Lomba, P., Altpeter, F., Zhang, H., Kenworthy, K., and Lange, T., Stable expression of AtGA2ox1 in a low-input turfgrass ( / Paspalum notatum Flugge) reduces bioactive gibberellin levels and improves turf quality under field conditions, / Plant Biotech. J., 2007, vol. 5, pp. 791鈥?01. CrossRef
    49. Zhang, H., Lomba, P., and Altpeter, F., Improved turf quality of transgenic bahiagrass ( / Paspalum notatum Flugge) constitutively expressing the ATHB16 gene, a repressor of cell expansion, / Mol. Breed., 2007, vol. 20, pp. 415鈥?23. CrossRef
    50. Rafiqul, M., Khan, I., Ceriotti, A., Aryan, A., McNabb, W., Moore, A., Craig, S., Spencer, D., and Higgins, T.J.V., Accumulation of a sulphur-rich seed albumin from sunflower in the leaves of transgenic subterranean clover ( / Trifolium subterraneum L.), / Transgenic Res., 1996, vol. 5, pp. 179鈥?85. CrossRef
    51. Wang, Z.Y., Ye, X.D., Nagel, J., Potrykus, I., and Spangenberg, G., Expression of a sulphur-rich sunflower albumin gene in transgenic tall fescue ( / Festuca arundinacea Schreb.) plants, / Plant Cell Rep., 2001, vol. 20, pp. 213鈥?19. 90000299" target="_blank" title="It opens in new window">CrossRef
    52. Somleva, M., Snell, K., Beaulieu, J., Peoples, O., Garrison, B., and Patterson, N., Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop, / Plant Biotech. J., 2008, vol. 6, pp. 663鈥?78. CrossRef
    53. Jackson, L., Shadle, G., Zhou, R., Nakashima, J., Chen, F., and Dixon, R., Improving saccharification efficiency of alfalfa stems through modification of the terminal stages of monolignol biosynthesis, / Bioenergy Res., 2008, vol. 1, pp. 180鈥?92. CrossRef
    54. Fu, C., Mielenz, J.R., Xiao, X., Ge, Y., Hamilton, C.Y., Chen, F., Bouton, J., Foston, M., Dixon, R.A., and Wang, Z.Y., Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass, / Proc. Natl. Acad. Sci. USA, 2011, vol. 108, pp. 3803鈥?808. CrossRef
    55. Fu, C., Sunkar, R., Zhou, C., Shen, H., Zhang, J., Matts, J., Wolf, J., Mann, D.G.J., Stewart, C.N.,Jr., Tang, Y., and Wang, Z.Y., Overexpression of miR156 in switchgrass ( / Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production, / Plant Biotech. J., 2012, vol. 10, pp. 443鈥?52. CrossRef
    56. Nifantova, S.N., Komarnitskii, I.K., and Kuchuk, N.V., Transgenic plants of / Medicago sativa L. obtained by use of / Agrobacterium tumefaciens, / Mater. Mezhd. nauch. konf. 鈥淪ovremennye aspekty geneticheskoi inzhenerii rastenii鈥?/em> (Proc. Int. Sci. Conf. 鈥淢odern Aspects of Genetic Engineering of Plants鈥?, Kiev, 2011, p. 50.
    57. Bradshaw, L.D., Padgette, S.R., Kimball, S.L., and Wells, B.H., Perspectives on glyphosate resistance, / Weed Technol., 1997, vol. 11, pp. 189鈥?98.
    58. Powles, S.B., Lorraine-Colwill, D.F., Dellow, J.F., and Preston, C., Evolved resistance to glyphosate in rigid ryegrass ( / Lolium rigidum) in Australia, / Weed Sci., 1998, vol. 46, pp. 604鈥?07.
    59. Simarmata, M., Kaufmann, J.E., and Penner, D., Potential basis of glyphosate resistance in California rigid ryegrass ( / Lolium rigidum), / Weed Sci., 2003, vol. 51, pp. 678鈥?82. CrossRef
    60. Baerson, S.R., Rosriguez, D.J., Tran, M., Feng, Y., Biest, N.A., and Dill, G.M., Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase, / Plant Physiol., 2002, vol. 129, pp. 1265鈥?275. CrossRef
    61. Perez, A. and Kogan, M., Glyphosate-resistant / Lolium multiflorum in Chilean orchards, / Weed Res., 2003, vol. 43, pp. 12鈥?9. CrossRef
    62. Van Gessel, M.J., Glyphosate-resistant horseweed from Delaware, / Weed Sci., 2001, vol. 49, pp. 703鈥?05. CrossRef
    63. Coghlan, A., Weedkiller may encourage blight, / New Scient., 2003, no. 2408, August 16, p.6.
    64. King, C.A., Purcell, L.C., and Vories, E.D., Plant growth and nitrogenase activity of glyphosate-tolerant soybean in response to foliar glyphosate applications, / Agron. J., 2001, vol. 93, pp. 179鈥?86. CrossRef
    65. Kosolapov, V.M., Trofimov, I.A., Trofimova, L.S., and Yakovleva, E.P., Multipurpose feed production in Russia, / Kormoproizvodstvo, 2011, no. 10, pp. 3鈥?.
    66. Kosolapov, V.M., Trofimov, I.A., Trofimova, L.S., and Yakovleva, E.P., Priority to agriculture 鈥?balanced, sustainable production and environmental management, / Obrazovanie, Nauka i Proizvodstvo, 2014, no. 2鈥?, pp. 33鈥?9.
    67. / Spravochnik po kormoproizvodstvu (Handbook for Fodder Production), Kosolapov, V.M. and Trofimov, I.A., Eds., Moscow: Rossel鈥檏hozakademiya, 2014.
    68. Laretin, N.A. and Chirkov, E.P., Forecast scenario for development of fodder in Russia untill 2030, / Mnogofunktsional鈥檔oe adaptivnoe kormoproizvodstvo: sredoobrazuyushchie funktsii kormovykh rastenii i ekosistem (Multipurpose Adaptive Feed Production: Environmental Functions of Forage Plants and Ecosystems), / Sborn. nauch. tr. VNII kormov im. V.R. Vil鈥檡amsa, Moscow: Ugreshskaya tipografiya, 2014, no. 2 (50), pp. 115鈥?27.
    69. Zhuchenko, A.A., Change of paradigms and methodologies in agricultural nature as the basics for transition to adaptive cropping system, / Adaptivnoe Kormoproizvodstvo, 2012, no. 1, pp. 6鈥?4.
    70. Wang, Z.Y., Ge, Y.X., Scott, M., and Spangenberg, G., Viability and longevity of pollen from transgenic and non-transgenic tall fescue ( / Festuca arundinacea) (Poaceae) plants, / Am. J. Bot., 2004, vol. 91, pp. 523鈥?30. CrossRef
    71. Ge, Y., Fu, C., Bhandari, H., Bouton, J., Brummer, E.C., and Wang, Z.Y., Pollen viability and longevity of switchgrass ( / Panicum virgatum L.), / Crop Sci., 2011, vol. 51, pp. 2698鈥?705. CrossRef
    72. / Metodicheskie ukazaniya po selektsii i pervichnomu semenovodstvu mnogoletnikh trav (Guidelines for the Selection and Primary Seed Production of Perennial Grasses), Moscow: Rossel鈥檏hozakademiya, 1993.
    73. Griffiths, D.J., The liability of seed crops of perennial ryegrass ( / Lolium perenne) to contamination by windborne pollen, / J. Agricult. Sci., 1951, vol. 40, pp. 19鈥?8. CrossRef
    74. Copeland, L.O. and Harding, E.E., Outcrossing in ryegrasses ( / Lolium spp.) as determined by fluorescence tests, / Crop Sci., 1970, vol. 10, pp. 254鈥?57. CrossRef
    75. Johnson, R.C., Bradley, V.L., and Knowles, R.P., Genetic contamination by windborne pollen in germplasm-regeneration plots of smooth brome grass, / Plant Genet. Resources Newslett., 1996, vol. 106, pp. 30鈥?4.
    76. Giddings, G.D., Hamilton, N.R.S., and Hayward, M.D., The release of genetically modified grasses. 1. Pollen dispersal to traps in / Lolium perenne, / Theor. Appl. Genet., 1997, vol. 94, pp. 1000鈥?006. CrossRef
    77. Giddings, G.D., Hamilton, N.R.S., and Hayward, M.D., The release of genetically modified grasses. 2. The influence of wind direction on pollen dispersal, / Theor. Appl. Genet., 1997, vol. 94, pp. 1007鈥?014. CrossRef
    78. Nurminiemi, M., Tufto, J., Nilsson, N.O., and Rognli, O.A., Spatial models of pollen dispersal in the forage grass meadow fescue, / Evol. Ecol., 1998, vol. 12, pp. 487鈥?02. CrossRef
    79. Rognli, O.A., Nilsson, N.O., and Nurminiemi, M., Effects of distance and pollen competition on gene flow in the wind-pollinated grass / Festuca pratensis Huds, / Heredity, 2000, vol. 85, pp. 550鈥?60. CrossRef
    80. Wipff, J.K. and Fricker, C., Gene flow from transgenic creeping bent grass ( / Agrostis stolonifera L.) in the Willamette valley, Oregon, / Int. Turfgrass Soc. Res. J., 2001, vol. 9, pp. 224鈥?41.
    81. Belanger, F.C., Meagher, T.R., Day, P.R., Plumley, K., and Meyer, W.A., Interspecific hybridization between / Agrostis stolonifera and related / Agrostis species under field conditions, / Crop Sci., 2003, vol. 43, pp. 240鈥?46.
    82. Wang, Z.Y., Lawrence, R., Hopkins, A., Bell, J., and Scott, M., Pollen-mediated transgene flow in the windpollinated grass species tall fescue ( / Festuca arundinacea Schreb.), / Mol. Breed., 2004, vol. 14, pp. 47鈥?0. CrossRef
    83. Sandhu, S., Blount, A., Quesenberry, K., and Altpeter, F., Apomixis and ploidy barrier suppress pollen-mediated gene flow in field grown transgenic turf and forage grass ( / Paspalum notatum), / Theor. Appl. Genet., 2010, vol. 121, pp. 919鈥?29. CrossRef
    84. Fitzpatrick, S., Reisen, P., and McCaslin, M., Pollen-mediated gene flow in alfalfa: a three-year summary of field research, / Proc. 2003 Central Alfalfa Improvement Conf., Virtual Meeting, July 21鈥?5, 2003, http://www.foragegenetics.com/pdf/3RRA2003CAICAbstractGeneFlow.pdf
    85. Teuber, L.R., van Deynze, A., Mueller, S., Mc Caslin, M., Fitzpatrick, S., and Rogen, G., Gene flow in alfalfa under honey bee ( / Apis mellifera) pollination, / Joint Conf. the 39th North American Alfalfa Improvement Conference and the 18th Trifolium Conference, Quebec City, Quebec, Canada, 18鈥?1 July, 2004, http://www.foragegenetics.com/pdf/4rranaaicabstractteubergeneflow.pdf
    86. Wang, Z.Y. and Brummer, E.C., Is genetic engineering ever going to take off in forage, turf and bioenergy crop breeding? / Ann. Bot., 2012, www.aob.oxfordjournals.org
    87. Schafer, M.G., Ross, A.A., Londo, J.P., Burdick, C.A., Lee, E.H., Travers, S.E., van de Water, P.K., and Sagers, C.L., The establishment of genetically engineered canola populations in the U.S., / PLoS ONE, 2011, vol. 6: e25736.
    88. Yunusov, Z.R., Transgenic as an inducer of meiotic recombination in tomato (for example, acceleration of breeding in / Lycopersicon esculentum Mill.), / Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: Ross. Gos. S-kh. Univ.-Timiryazev S-kh. Akad., 2011.
    89. Chesnokov, Yu.V., Heritable changes caused by transfer of the exogenous DNA in higher plants by germinating pollen, / Doctoral (Biol.) Dissertation, St. Petersburg: Vses. Inst. Rastenievod., 2000.
    90. / Scientists鈥?Working Group on Biosafety (SWGB). Manual for Assessing Ecological and Human Health Effects of Genetically Engineered Organisms, Edmonds, Washington, DC: Edmonds Institute, 1998, www.edmonds-institute.org/manual.html
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
    Plant Sciences
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3407
文摘
The review considers the potential environmental risks associated with large-scale cultivation of various types of genetically modified forage crops. The results of the study of gene flow in forage grasses occurring in open ecosystems through the dissemination of transgenic pollen by wind and insects at different distances in the stands of forage plants. The necessary conditions for spatial isolation of transgenic and non-transgenic samples of forage crops from each other are described. The ecological, biological, and economic value of forage plants, as well as their ecological and environmental functions in agricultural landscapes, including the significant impact they have on the ecological status of ecological communities, contributing to the preservation and accumulation of organic matter in the biosphere are briefly discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700