CANPMR syndrome and chromosome 1p32-p31 deletion syndrome coexist in two related individuals affected by simultaneous haplo-insufficiency of CAMTA1 and NIFA genes
详细信息    查看全文
  • 作者:Emanuele G. Coci ; Udo Koehler ; Thomas Liehr ; Armin Stelzner…
  • 关键词:NFIA ; Chromosome 1p32 ; p31 deletion syndrome ; CAMTA1 ; CANPMR syndrome ; Paracentric inversion on short arm of chromosome 1
  • 刊名:Molecular Cytogenetics
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:9
  • 期:1
  • 全文大小:1,935 KB
  • 参考文献:1.Steinlin M, Zangger B, Boltshauser E. Non-progressive congenital ataxia with or without cerebellar hypoplasia: a review of 34 subjects. Dev Med Child Neurol. 1998;40:148–54.CrossRef PubMed
    2.Yapici Z, Eraksoy M. Non-progressive congenital ataxia with cerebellar hypoplasia in three families. Acta Paediatr. 2005;94:248–53.CrossRef PubMed
    3.Guzzetta F, Mercuri E, Bonanno S, Longo M, Spano M. Autosomal recessive congenital cerebellar atrophy. A clinical and neuropsychological study. Brain Dev. 1993;15:439–45.CrossRef PubMed
    4.Imamura S, Tachi N, Oya K. Dominantly inherited early-onset non-progressive cerebellar ataxia syndrome. Brain Dev. 1993;15:372–6.CrossRef PubMed
    5.Bomar JM, Benke PJ, Slattery EL, Puttagunta R, Taylor LP, Seong E, et al. Mutations in a novel gene encoding a CRAL-TRIO domain cause human Cayman ataxia and ataxia/dystonia in the jittery mouse. Nat Genet. 2003;35:264–9.CrossRef PubMed
    6.Tranebjaerg L, Teslovich TM, Jones M, Barmada MM, Fagerheim T, Dahl A, et al. Genome-wide homozygosity mapping localizes a gene for autosomal recessive non-progressive infantile ataxia to 20q11-q13. Hum Genet. 2003;113:293–5.CrossRef PubMed
    7.Boycott KM, Flavelle S, Bureau A, Glass HC, Fujiwara TM, Wirrell E, et al. Homozygous deletion of the very low density lipoprotein receptor gene causes autosomal recessive cerebellar hypoplasia with cerebral gyral simplification. Am J Hum Genet. 2005;77:477–83.PubMedCentral CrossRef PubMed
    8.Nicolas E, Poitelon Y, Chouery E, Salem N, Levy N, Mégarbané A, et al. CAMOS, a nonprogressive, autosomal recessive, congenital cerebellar ataxia, is caused by a mutant zinc-finger protein, ZNF592. Eur J Hum Genet. 2010;18:1107–13.PubMedCentral CrossRef PubMed
    9.Lise S, Clarkson Y, Perkins E, Kwasniewska A, Sadighi Akha E, Schnekenberg RP, et al. Recessive mutations in SPTBN2 implicate β-III spectrin in both cognitive and motor development. PLoS Genet. 2012;8(12):e1003074. doi:10.​1371/​journal.​pgen.​1003074 .PubMedCentral CrossRef PubMed
    10.Burns R, Majczenko K, Xu J, Peng W, Yapici Z, Dowling JJ, et al. Homozygous splice mutation in CWF19L1 in a Turkish family with recessive ataxia syndrome. Neurology. 2014;83:2175–82.PubMedCentral CrossRef PubMed
    11.Jobling RK, Assoum M, Gakh O, Blaser S, JRaiman JA, Mignot C, et al. PMPCA mutations cause abnormal mitochondrial protein processing in patients with non-progressive cerebellar ataxia. Brain. 2015;138:1505–17.CrossRef PubMed
    12.Finkler A, Ashery-Padan R, Fromm H. CAMTA1s: calmodulin-binding transcription activators from plants to human. FEBS Lett. 2007;581:3893–8.CrossRef PubMed
    13.Han J, Gong P, Redding K, Mitra M, Guo P, Li HS. The fly CAMTA transcription factor potentiates deactivation of rhodopsin, a G protein-couples light receptor. Cell. 2006;127:847–58.CrossRef PubMed
    14.Gong P, Han L, Redding K, Li HS. A potential dimerization region of dCAMTA is critical termination of fly visual response. J Biol Chem. 2007;282:21253–8.CrossRef PubMed
    15.Thevenon J, Lopez E, Keren B, Heron D, Mignot C, Altuzarra C, et al. Intragenic CAMTA1 rearrangements cause non-progressive congenital ataxia with or without intellectual disability. J Med Genet. 2012;49:400–8.CrossRef PubMed
    16.Campbell CG, Wang H, Hunter GW. Interstitial microdeletion of chromosome 1p in two siblings. Am J Med Genet. 2002;111:289–94.CrossRef PubMed
    17.Lu W, Quintero-Rivera F, Fan Y, Alkuraya FS, Donovan DJ, Xi Q, et al. NFIA haploinsufficiency is associated with a CNS malformation syndrome and urinary tract defects. PLoS Genet. 2007;3:830–43.CrossRef
    18.Qian F, Kruse U, Lichter P, Sippel AE. Chromosomal localization of the four genes (NFIA, B, C, and X) for the human transcription factor nuclear factor I by FISH. Genomics. 1995;28:66–73.CrossRef PubMed
    19.Grunder A, Qian F, Ebel TT, Mincheva A, Lichter P, Kruse U, et al. Genomic organization, splice products and mouse chromosomal localization of genes for transcription factor Nuclear Factor One. Gene. 2003;304:171–81.CrossRef PubMed
    20.Gronostajski RM. Roles of the NFI/CTF gene family in transcription and development. Gene. 2000;249:31–45.CrossRef PubMed
    21.Das Neves L, Duchala CS, Godinho F, Haxhiu MA, Colmenares C, Macklin WB, et al. Disruption of the murine nuclear factor I-A gene (Nfia) results in perinatal lethality, hydrocephalus, and agenesis of the corpus callosum. PNAS. 1999;96:11946–51.PubMedCentral CrossRef PubMed
    22.Wong YW, Schulze C, Streichert T, Gronostajski RM, Schachner M, Tilling T. Gene expression analysis of nuclear factor I-A deficient mice indicates delayed brain maturation. Genome Biol. 2007;8:R72.PubMedCentral CrossRef PubMed
    23.Steele-Perkins G, Butz KG, Lyons GE, Zeichner-David M, Kim HJ, Cho MI, et al. Essential role of NFI-C/CTF transcription-replication factor in tooth root development. Mol Cell Biol. 2003;23:1075–84.PubMedCentral CrossRef PubMed
    24.Steele-Perkins G, Plachez C, Butz KG, Yang G, Bachurski CJ, Kinsman SL, et al. The transcription factor gene Nfib is essential for both lung maturation and brain development. Mol Cell Biol. 2005;25:685–98.
    25.Koehler U, Holinski-Feder E, Ertl-Wagner B, Kunz J, von Moers A, von Voss H, et al. A novel 1p31.3p32.2 deletion involving the NFIA gene detected by array CGH in a patient with macrocephaly and hypoplasia of the corpus callosum. Eur J Pediatr. 2010;169:463–8.CrossRef PubMed
    26.Nyboe D, Kreiborg S, Kirchhoff M, Hove HB. Familial craniosynostosis associated with a microdeletion involving the NFIA gene. Clin Dysmorphol. 2015;24:109–12.CrossRef PubMed
    27.Paul LK, Brown WS, Adolphs R, Tyszka JM, Richards LJ, Mukherjee P, et al. Agenesis of the corpus callosum: genetics, development and functional aspects of the connectivity. Nat Rev Neurosci. 2007;8:287–99.CrossRef PubMed
  • 作者单位:Emanuele G. Coci (1)
    Udo Koehler (2)
    Thomas Liehr (3)
    Armin Stelzner (1)
    Christian Fink (4)
    Hendrik Langen (1)
    Joachim Riedel (1)

    1. Center of Social Pediatrics and Pediatric Neurology, General Hospital of Celle, 29221, Celle, Germany
    2. Medizinisch Genetisches Zentrum, 80335, Munich, Germany
    3. Institute of Human Genetics, Friedrich Schiller University, Jena University Hospital, 07743, Jena, Germany
    4. Department of Radiology, General Hospital of Celle, 29223, Celle, Germany
  • 刊物主题:Cytogenetics; Molecular Medicine;
  • 出版者:BioMed Central
  • ISSN:1755-8166
文摘
Background Non-progressive cerebellar ataxia with mental retardation (CANPMR, OMIM 614756) and chromosome 1p32-p31 deletion syndrome (OMIM 613735) are two very rare inherited disorders, which are caused by mono-allelic deficiency (haplo-insufficiency) of calmodulin-binding transcription activator 1 (CAMTA1) and, respectively, nuclear factor 1 A (NFIA) genes. The yet reported patients affected by mono-allelic CAMTA1 dysfunction presented with neonatal hypotonia, delayed and ataxic gait, cerebellar atrophy, psychological delay and speech impairment, while individuals carrying a disrupted NFIA allele suffered from agenesis/hypoplasia of the corpus callosum, ventriculomegaly, developmental delay and urinary tract abnormalities. Both disorders were not seen in one patient together before.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700