Electroless deposition of Gold-Platinum Core@Shell Nanoparticles on Glassy Carbon Electrode for Non-Enzymatic Hydrogen Peroxide sensing#
详细信息    查看全文
  • 作者:N S K GOWTHAMAN ; S ABRAHAM JOHN
  • 关键词:Au ; Pt core@shell nanoparticles ; electroless deposition ; nucleation ; hydrogen peroxide ; lowest detection limit ; electrocatalytic activity
  • 刊名:Journal of Chemical Sciences
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:128
  • 期:3
  • 页码:331-338
  • 全文大小:1,359 KB
  • 参考文献:1.Wang Y H, Yang X J, Bai J, Jiang X and Fan G Y 2013 Biosens. Bioelectron. 43 180CrossRef
    2.Sato K, Abe E, Takahashi M and Anzai J 2014 J. Colloid Interf. Sci. 432 92CrossRef
    3.Liu W N, Ding D, Song Z L, Bian X, Nie X K, Zhang X B, Chen Z and Tan W H 2014 Biosens. Bioelectron. 52 438CrossRef
    4.Ahmad M, Pan C, Gan L, Nawaz Z and Zhu J 2010 J. Phys. Chem. C 114 243CrossRef
    5.Usui Y, Sato K and Tanaka M 2003 Angew. Chem. Int. Ed. 42 5623CrossRef
    6.Halliwell B, Clement M V and Long L H 2000 FEBS Lett. 486 10CrossRef
    7.Long L H, Evans P J and Halliwell B 1999 Biochem. Biophys. Res. Commun. 262 605CrossRef
    8.Dezwart L L, Meerman J H N, Commandeur J N W and Vermeulen W P E 1999 Free Radic. Biol. Med. 26 202CrossRef
    9.Ensafi A A, Atashbar N Z, Ghiaci M, Taghizadeh M and Rezaei B 2015 Mat. Sci. Eng. C 47 290CrossRef
    10.Santucci R, Laurenti E, Sinibaldi F and Ferrari R P 2002 Biochim. Biophys. Acta 1596 225CrossRef
    11.Klassen N V, Marchington D and Mcgowan H C E 1994 Anal. Chem. 66 2921CrossRef
    12.Mori I, Takasaki K, Fujita Y and Matsuo T 1998 Talanta 47 631CrossRef
    13.Greenway G M, Leelasattarathkul T, Liawruangrath S, Wheatley R A and Youngvises N 2006 Analyst 131 501CrossRef
    14.Pinkernell U, Effkemann S and Karst U 1997 Anal. Chem. 69 3623CrossRef
    15.Luque G L, Ferreyra N F, Leyva A G and Rivas G A 2009 Sens. Actuat. B 142 331CrossRef
    16.Guascito M R, Filippo E, Malitesta C, Manno D, Serra A and Turco A 2008 Biosens. Bioelectron. 24 1057CrossRef
    17.Guascito M R, Chirizzi D, Malitesta C, Mazzotta E, Siciliano M, Siciliano T, Tepore A and Turco A 2011 Biosens. Bioelectron. 26 3562CrossRef
    18.Lei C X, Hu S Q, Shen G L and Yu R Q 2003 Talanta 59 981CrossRef
    19.Xu Q, Zhao Y, Xu J Z and Zhu J J 2006 Sens. Actuat. B 114 379CrossRef
    20.Bai Y, Wang Y D, Zheng W J and Chen Y S 2008 Colloids Surf. B 63 110CrossRef
    21.Pumera M, Merkoci A and Alegret S 2006 Sens. Actuat. B 113 617CrossRef
    22.Song M J, Hwang S W and Whang D M 2010 Talanta 80 1648CrossRef
    23.Palanisamy S, Chen S M and Sarawathi R 2012 Sens. Actuat. B 166–167 372CrossRef
    24.Wang L, Bo X, Bai J, Zhu L and Guo L 2010 Electroanalysis 22 2536CrossRef
    25.Campbell C T 1990 Annu. Rev. Phys. Chem. 41 775CrossRef
    26.Rodriguez J A 1996 Surf. Sci. Rep. 24 225CrossRef
    27.Luo J, Maye M M, Kariuki N N, Wang L Y, Njoki P, Lin Y, Schadt M, Naslund H R and Zhong C J 2005 Catal. Today 99 91CrossRef
    28.Kang X H, Mai Z B, Zou X Y, Cai P X and Mo J Y 2007 Anal. Biochem. 369 71CrossRef
    29.Kristian N, Yan Y and Wan X 2008 Chem. Commun. 353
    30.Bond G C 2007 Platinum Met. Rev. 51 63CrossRef
    31.Harada M, Asakura K and Toshima N 1993 J. Phys. Chem. 97 5103CrossRef
    32.Heng H Y, Gibbons P C, Kelton K F and Buhro W E 1997 J. Am. Chem. Soc. 119 10382CrossRef
    33.Baletto F, Mottet C and Ferrando R 2003 Phys. Rev. Lett. 90 135504CrossRef
    34.Crooks R and Zhao M 1999 Adv. Mat. 11 217CrossRef
    35.Jena B K and Raj C R 2007 Langmuir 23 4064CrossRef
    36.Jena B K and Raj C R 2008 Chem. Mater. 20 3546CrossRef
    37.Ye H and Crooks R M 2005 J. Am. Chem. Soc. 127 4930CrossRef
    38.Kumar S and Zou S 2005 J. Phys. Chem. B 109 15707CrossRef
    39.Lou Y, Maye M M, Han L, Luo J and Zhong C. 2001 Chem. Commun. 473
    40.Zhou Y, Yu G, Chang F, Hu B and Zhong C J 2012 Anal. Chim. Acta 757 56CrossRef
    41.Wang J, Gao H, Sun F and Xu C 2014 Sens. Actuat. B 191 612CrossRef
    42.Gowthaman N S K and John S A 2015 RSC Adv. 5 42369CrossRef
    43.Cao L, Tong L, Diao P, Zhu T and Liu Z 2004 Chem. Mater. 16 3239CrossRef
    44.Liz-Marzan L M and Philipse A P 1995 J. Phys. Chem. 99 15120CrossRef
    45.Matsumoto T, Komatsu T, Arai K, Yamazaki T, Kijima M, Shimizu H, Takasawab Y and Nakamura J 2004 Chem. Commun. 840
    46.Kannan P and John S A 2010 Electrochim. Acta 55 3497CrossRef
    47.Li Y, Lu Q, Wua S, Wanga L and Shi X 2013 Biosens. Bioelectron. 41 576CrossRef
    48.Li Y, Ma J and Ma Z 2013 Electrochim. Acta 108 435CrossRef
    49.Kang Q, Yang L X and Cai Q Y 2008 Bioelectrochemistry 74 62CrossRef
    50.Xu C, Sun F, Gao H and Wang J 2013 Anal. Chim. Acta 780 20CrossRef
    51.Heli H, Sattarahmady N, Vais R D and Mehdizadeh A R 2014 Sens. Actuat. B 192 310CrossRef
  • 作者单位:N S K GOWTHAMAN (1)
    S ABRAHAM JOHN (1)

    1. Centre for Nanoscience and Nanotechnology, Department of Chemistry, Gandhigram Rural Institute, Gandhigram 624 302, Dindigul, Tamilnadu, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Chemistry
  • 出版者:Springer India
  • ISSN:0973-7103
文摘
A non-enzymatic hydrogen peroxide sensor was developed using gold@platinum nanoparticles (Au@PtNPs) with core@shell structure fabricated on glassy carbon electrode (GCE) by electroless deposition method. Initially, gold nanoparticles (AuNPs) were deposited on GCE by reducing HAuCl<sub>4sub> in the presence of NH<sub>2sub>OH and the deposited AuNPs on GCE act as the nucleation centre for the deposition of platinum nanoparticles (PtNPs) in the presence of H<sub>2sub>PtCl<sub>6sub> and NH<sub>2sub>OH. SEM and AFM studies demonstrated that the electroless deposition of Pt on Au was isotropic and uniform. Further, Au@PtNP-modified substrates were characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray analysis (EDAX) and cyclic voltammetry (CV). XPS showed characteristic binding energies at 71.2 and 74.4 eV for PtNPs and, 83.6 and 87.3 eV for AuNPs indicating the zero-valent nature in both of them. The electrocatalytic activity of Au@PtNP-modified electrode was investigated towards hydrogen peroxide (HP) reduction. The modified electrode exhibited higher electrocatalytic activity towards HP by not only shifting its reduction potential by 370 mV towards less positive potential but also by enhancing the reduction current when compared to bare and AuNP-modified GCE. The present method shows better sensitivity compared to the reported methods in literature and the detection limit was found to be 60 nM.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700