Inhomogeneous Chemical Evolution of the Galaxy in the Solar Neighbourhood
详细信息    查看全文
文摘
N-body numerical simulations of an inhomogeneous Galactic Chemical Evolution (GCE) of the solar neighbourhood with a high temporal resolution are presented. The solar annular ring is divided into distinct spatial grids of area ~1-?kpc2. Each grid evolves distinctly in terms of star formation and nucleosynthetic yields from numerous generations of stars. The evolution of the galaxy is simulated by considering discrete episodes of star formation. Subsequent to the evolution of the simulated stars within each grid the stellar nucleosynthetic yields are homogenized within the grid rather than the traditionally adopted criteria of homogenizing over the entire solar annular ring. This provides a natural mechanism of generating heterogeneities in the elemental abundance distribution of stars. A complex chemical evolutionary history is inferred that registers episodes of time-dependent contributions from SN II+Ib/c with respect to SN Ia. It was observed that heterogeneities can remerge even after episodes of large scale homogenizations on scales larger than the grid size. However, a comparison of the deduced heterogeneities with the observed scatter in the elemental abundances of the dwarf stars suggest only a partial match, specifically, for [Fe/H] > ?.5. The deduced heterogeneities in the case of carbon, oxygen, magnesium, silicon, sulphur, calcium and titanium can explain the observed heterogeneities for [Fe/H] < ?.5. It may not be possible to explain the entire observed spread exclusively on the basis of the inhomogeneous GCE.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700