Lipids in hairy roots and non-Agrobacterium induced roots of Crambe abyssinica
详细信息    查看全文
  • 作者:Bartosz G??b (1)
    Tomasz Furmanek (2)
    Magdalena Miklaszewska (1)
    Antoni Bana? (1)
    Aleksandra Królicka (1)
  • 关键词:Agrobacterium rhizogenes ; Crambe abyssinica ; Lipid ; Transformation
  • 刊名:Acta Physiologiae Plantarum
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:35
  • 期:7
  • 页码:2137-2145
  • 全文大小:411KB
  • 参考文献:1. Ambros PF, Matzke AJM, Matzke MA (1986) Localization of / Agrobacterium rhizogenes T-DNA in plant chromosomes by in situ hybridization. EMBO J 5(9):2073-077
    2. Bana? W, Furmanek T, Bana? A (2011) Effect haloxyfop and alloxydim applied separately and in combination with salicylic acid, diphenylamine, or norflurazon on the root growth and fatty acid composition of the selected species of grasses and dicotyledonous plants. Acta Sci Pol, Agricultura 10(3):3-3
    3. Bekesiova I, Nap JP, Mlynarova L (1999) Isolation of high quality DNA and RNA from leaves of the carnivorous plant / Drosera rotundifolia. Plant Mol Biol Rep 17:269-77 CrossRef
    4. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911-17 CrossRef
    5. Bonhomme V, Laurain-Mattar D, Lacoux J, Fliniaux MA, Jacquin-Dubreuil A (2000) Tropane alkaloid production by hairy roots of / Atropa belladonna obtained after transformation with / Agrobacterium / rhizogenes 15834 and / Agrobacterium tumefaciens containing / rol / A, / B, / C genes only. J Biotechnol 81:151-58 CrossRef
    6. Cai Z, Kastell A, Knorr D, Smetanska I (2012) Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Rep 31:461-77 CrossRef
    7. Carlsson AS, Yilmaz JL, Green AG, Stymne S, Hofvander P (2011) Replacing fossil oil with fresh oil—with what and for what? Eur J Lipid Sci Technol 113(7):812-31 CrossRef
    8. Cequier-Sánchez E, Rodríguez C, Ravelo AG, Zárate R (2008) Dichloromethane as a solvent for lipid extraction and assessment of lipid classes and fatty acids from samples of different natures. J Agric Food Chem 56(12):4297-303 CrossRef
    9. Cequier-Sánchez E, Rodríguez C, Dorta-Guerra R, Ravelo AG, Zárate R (2011) / Echium / acanthocarpum hairy root cultures, a suitable system for polyunsaturated fatty acid studies and production. BMC Biotechnol 11:42 CrossRef
    10. Christey MC, Sinclair BK, Braun RK, Wyke L (1997) Regeneration of transgenic vegetable brassicas ( / Brassica oleracea and / B. campestris) via Ri-mediated transformation. Plant Cell Rep 16:587-93 CrossRef
    11. David C, Tempe J (1988) Genetic transformation of cauliflower ( / Brassica oleracea L. var. / botrytis) by / Agrobacterium rhizogenes. Plant Cell Rep 7:88-1 CrossRef
    12. Engler D, Montanez B (2010) Transformation of / Crambe abyssinica. Mendel Biotechnology Inc. Haward, CA. USA. Patent Application Publication. 2010/0281565 A1
    13. Flores H, Medina-Bolivar F (1995) Root culture and plant natural products: ‘Unearthing-the hidden half of plant metabolism. Plant Tissue Cult Biotechnol 1:59-4
    14. Furmanek T, Bana? W (2011) Embryogenic callus formation by cotyledon and leaf explants of / Crambe abyssinica seedlings. BioTechnologia 92(2):209-13
    15. Georgiev MI, Agostini E, Ludwig-Muller J, Xu J (2012) Genetically transformed roots: from plant disease to biotechnological resource. Trends Biotechnol 30(10):528-37 CrossRef
    16. Hamill JD, Parr AJ, Rhodes MJC, Robins RJ, Walton NJ (1987) New routes to plant secondary products. Nat Biotechnol 5:800-04 CrossRef
    17. Hunter CS, Neill SJ (1990) Induction of hairy roots by / Agrobacterium rhizogenes and growth of hairy roots in vitro. In: Pollard JW, Walker JM (eds) Methods in molecular biology, vol 6, Plant Cell and Tissue Culture, pp 279-88
    18. Jeon J, Lee S, Jung K, Jun S, Jeong D, Lee J, Kim C, Jang S, Lee S, Yang K, Nam J, An J, Han M, Sung R, Choi H, Yu J, Choi J, Cho S, Cha S, Kim S, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22(6):561-70 CrossRef
    19. Krolicka A, Szpitter A, Stawujak K, Baranski R, Gwizdek-Wisniewska A, Skrzypczak A, Kaminski M, Lojkowska E (2010) Teratomas of / Drosera capensis var. / alba as a source of naphthoquinone: ramentaceone. Plant Cell Tissue Organ Cult 103:285-92 CrossRef
    20. Królicka A, Staniszewska I, Bielawski K, Maliński E, Szafranek J, ?ojkowska E (2001) Establishment of hairy root cultures of / Ammi majus. Plant Sci 160:259-64 CrossRef
    21. Kumar V, Sharma A, Prasad BCN, Gururaj HB, Ravishankar GA (2006) / Agrobacterium / rhizogenes mediated genetic transformation resulting in hairy root formation is enhanced by ultrasonication and acetosyringone treatment. Electron J Biotechnol 9(4):1- CrossRef
    22. Li X, Ahlman A, Yan X, Lindgren H, Zhu L (2010) Genetic transformation of the oilseed crop / Crambe abyssinica. Plant Cell Tissue Organ Cult 100:149-56 CrossRef
    23. Li X, van Loo EN, Gruber J, Fan J, Guan R, Frentzen M, Stymne S, Zhu L-H (2012) Development of ultra-high erucic acid oil in the industrial oil crop Crambe abyssinica. Plant Biotechnol J 10(7):862-70 CrossRef
    24. Maliyakal EJ (1992) An efficient method for isolation of RNA and DNA from plants containing polyphenolics. Nucleic Acids Res 20(9):2381 CrossRef
    25. Mankin SL, Hill DS, Olhoft PM, Toren E, Wenck AR, Nea L, Xing L, Brown JA, Fu H, Ireland L, Jia H, Hillebrand H, Jones T, Song H-S (2007) Disarming and sequencing of / Agrobacterium rhizogenes strain K599 (NCPPB2659) plasmid pRi2659. In Vitro Cell Dev Biol Plant 43:521-35 CrossRef
    26. Melchers LS, Regensburgtuink AJG, Schilperoort RA, Hooykaas PJJ (1989) Specificity of signal molecules in the activation of / Agrobacterium virulence gene expression. Mol Microbiol 3:969-77 CrossRef
    27. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor
    28. Nath UK, Becker CH, M?llers C (2007) Increasing erucic acid content in rapeseed ( / Brassica napus L.). In: Proceedings of the 12th international rapeseed congress, Wuhan, China, vol I, pp 173-76
    29. Nath UK, Wilmer JA, Wallington EJ, Becker HC, M?llers C (2009) Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with / Ld- / LPAAT?+? / Bn- / fae 1 transgenes in rapeseed ( / Brassica napus L.). Theor Appl Genet 118(4):765-73 CrossRef
    30. Olszowska O (1992) Korzenie transformowane ro?lin leczniczych. Biotechnologia 19:21-6
    31. Porter JR (1991) Host range and implications of plant infection by / Agrobacterium rhizogenes. Crit Rev Plant Sci 10:387-21 CrossRef
    32. Sheikholeslam SN, Weeks DP (1987) Acetosyringone promotes high efficiency transformation of / Arabidopsis thaliana explants by / Agrobacterium tumefaciens. Plant Mol Biol 8:291-98 CrossRef
    33. Shen WH, Petit A, Guern J, Tempé J (1988) Hairy roots are more sensitive to auxin than normal roots. PNAS USA 85(10):3417-421 CrossRef
    34. Siegeland NR, Enns RK (1979) Soluble polyvinylpyrrolidine and bovine serum albumin adsorb polyphenols from soybean suspension cultures. Plant Physiol 63:206-08 CrossRef
    35. Tao C, He BB (2005) Enzymatic isolation and enrichment of erucic acid from HEA seed oils: current status. Trans ASAE 48(4):1471-479
    36. Tepfer D (1984) Transformation of several species of higher plants by / Agrobacterium rhizogenes: sexual transmission of the transformer genotype and phenotype. Cell 37:959-67 CrossRef
    37. Tiwari RK, Trivedi M, Guang ZC, Guo GQ, Zheng GC (2008) / Agrobacterium rhizogenes mediated transformation of / Scutellaria baicalensis and production of flavonoids in hairy roots. Biol Plant 52:26-5 CrossRef
    38. Toivonen L, Laakso S, Rosenqvist H (1992) The effect of temperature on hairy root cultures of / Catharanthus roseus: growth, indole alkaloid accumulation and membrane lipid composition. Plant Cell Rep 11:395-99
    39. Tukey JW (1953) Some selected quick and easy methods of statistical analysis. Trans N Y Acad Sci 16(2):88-7
    40. Vargas-Lopez JM, Wiesenborn D, Tostenson K, Cihacek L (1999) Processing of crambe for oil and isolation of erucic acid. J Am Oil Chem Soc 76:801-09 CrossRef
    41. Varma A, Padh H, Shrivastava N (2007) Plant genomic DNA isolation: an art or a science. Biotechnol J 2:386-92 CrossRef
    42. Wang Y, Peng P (1998) Intergeneric hybridization between / Brassica species and / Crambe abyssinica. Euphytica 101:1- CrossRef
    43. Wang YM, Wang JB, Luo D, Jia JF (2001) Regeneration of plants from callus cultures of roots induced by / Agrobacterium rhizogenes on / Alhagi pseudoalhagi. Cell Res 11(4):279-82 CrossRef
  • 作者单位:Bartosz G??b (1)
    Tomasz Furmanek (2)
    Magdalena Miklaszewska (1)
    Antoni Bana? (1)
    Aleksandra Królicka (1)

    1. Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, K?adki 24, 80-822, Gdańsk, Poland
    2. Institute of Biology and Environmental Protection, Pomeranian University in S?upsk, Arciszewskiego 22b, 76-200, S?upsk, Poland
文摘
Hairy root cultures of Crambe abyssinica were obtained through infection of leaves with two wild-type agropine strains of Agrobacterium rhizogenes. The efficiency of transformation was about 16?%. The presence of T-DNA from A. rhizogenes in the hairy roots genome was confirmed by PCR using specific primers for rolB and rolC genes. Selected clones of hairy roots and non-Agrobacterium induced roots from sterile cultures were used for analyses of acyl-lipids. The total amount of acyl-lipids per mg of dry weight was similar in both the non-Agrobacterium induced roots and the hairy roots in good physiological condition, and ranged from 38 to 53?nmol. However, in the clones which showed symptoms of ageing, the lipid content was severely reduced. Also the lipid composition of hairy roots appears to be similar to the composition of non-transformed roots. Polar lipids were the dominant class of lipids in both types of roots (about 75?%). Furthermore, we found diacylglycerols, free fatty acids (FFA), triacylglycerols, sterol esters, and an unidentified lipid class. The dominant fatty acids in the lipids of both types of roots were α-linolenic acid, palmitic acid, and linoleic acid (over 12?% of total FA). Among the lipids of both hairy roots and non-Agrobacterium induced roots of C. abyssinica, an unidentified FA was found (over 16?% of total FAs). The present study is the first example of establishment of hairy roots cultures of C. abyssinica. It also includes the first analysis of the lipids in hairy roots and non-Agrobacterium induced roots of this species.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700