Immobilization and characterization of benzoylformate decarboxylase from Pseudomonas putida on spherical silica carrier
详细信息    查看全文
  • 作者:Stephanie Peper (1) peper@hsu-hh.de
    Selin Kara (2)
    Wei Sing Long (1)
    Andreas Liese (2)
    Bernd Niemeyer (1)
  • 关键词:Immobilization – ; Benzoylformate decarboxylase – ; Silicagel – ; Enantioselectivity
  • 刊名:Bioprocess and Biosystems Engineering
  • 出版年:2011
  • 出版时间:August 2011
  • 年:2011
  • 卷:34
  • 期:6
  • 页码:671-680
  • 全文大小:397.9 KB
  • 参考文献:1. Cao L (2005) Carrier-bound immobilized enzymes. Wiley-VCH, Weinheim
    2. Lee Ch, Lin TS, Mou CY (2009) Mesoporous materials for encapsulating enzymes. Nano Today 4:165–197
    3. White CA, Kennedy JF (1980) Popular matrices for enzyme and other immobilizations. Enzyme Microb Technol 2:82–90
    4. Gemeiner P (1992) Materials for enzyme engineering. In: Gemeiner P (ed) Enzyme engineering. Ellis Horwood, New York, pp 13–119
    5. Hilterhaus L, Minow B, M眉ller J, Berheide M, Quitmann H, Katzer M, Thum O, Antranikian G, Zeng AP, Liese A (2008) Practical application of different enzymes immobilized on sepabeads. Bioprocess Biosyst Eng 31:163–271
    6. Rosenfeld H, Aniulyte J, Helmholz H, Liesiene J, Thiesen P, Niemeyer B, Prange A (2005) Comparison of modified supports on the base of glycoprotein interaction studies and of adsorption investigations. J Chromatogr A 1092:76–88
    7. K眉mel G, Daus H, Mauch H (1979) Improved method for the cyanogen bromide activation of agarose beads. J Chromatogr 172:221–226
    8. Sundberg L, Porath J (1974) Preparation of adsorbents for biospecific affinity chromatography: I. Attachment of group-containing ligands to insoluble polymers by means of bifunctional oxiranes. J Chromatogr 90:87–98
    9. Nilsson K, Mosbach K (1981) Immobilization of enzymes and affinity ligands to various hydroxyl group carrying supports using highly reactive sulfonyl chlorides. Biochem Biophys Res Commun 102:449–457
    10. Nilsson K, Mosbach K (1987) Tresyl chloride-activated supports for enzyme immobilization. Methods Enzymol 135:65–78
    11. Nilsson K, Mosbach K (1984) Immobilization of ligands with organic sulfonyl chlorides. Methods Enzymol 104:56–69
    12. Bethel GS, Ayers JS, Hancock WS, Hearn MTW (1979) A novel method of activation of cross-linked agaroses with 1,1′-carbonyl diimidazole which gives a matrix for affinity chromatography devoid of additional charged groups. J Biol Chem 254:2572–2574
    13. Cuatrecasas P, Parikh I (1972) Adsorbents for affinity chromatography. Use of N-hydroxysuccinimide esters of agarose. Biochemistry 11:2291–2299
    14. Wilcocks R, Ward O, Collins S, Dewdney N, Hong Y, Prosen E (1992) Acyloin formation by benzoylformate decarboxylase from Pseudomonas putida. Appl Environ Microbiol 58:1699–1704
    15. Wilcocks R, Ward O (1992) Factors affecting 2-hydroxypropiophenone formation by benzoylformate decarboxylase from Pseudomonas putida. Biotechnol Bioeng 39:1058–1063
    16. Iding H, Dunnwald T, Greiner L, Liese A, Muller M, Siegert P, Grotzinger J, Demir AS, Pohl M (2000) Benzoylformate decarboxylase from Pseudomonas putida as stable catalyst for the synthesis of chiral 2-hydroxy ketones. Chem Eur J 6:1483–1495
    17. Dunnwald T, Demir AS, Siegert P, Pohl M, Muller M (2000) Enantioselective synthesis of (S)-2-hydroxypropanone derivatives by benzoylformate decarboxylase catalyzed C–C bond formation. Eur J Org Chem 11:2161–2170
    18. Gala D, DiBenedetto DJ, Clark JE, Murphy BL, Schumacher DP, Steinman M (1996) Preparations of antifungal Sch 42427/SM 9164: preparative chromatographic resolution, and total asymmetric synthesis via enzymatic preparation of chiral alphahydroxy arylketones. Tetrahedron Lett 37:611–614
    19. Fang QK, Han ZX, Grover P, Kessler D, Senanayake CH, Wald SA (2000) Rapid access to enantiopure bupropion and its major metabolite by stereospecific nucleophilic substitution on an alpha-ketotriflate. Tetrahedron Asymmetr 11:3659–3663
    20. Berheide M, Peper S, Kara S, Long WS, Schenkel S, Pohl M, Niemeyer B, Liese A (2010) Influence of the hydrostatic pressure and pH on the asymmetric 2-hydroxyketone formation catalyzed by Pseudomonas putida benzoylformate decarboxylase and variants thereof. Biotechnol Bioeng 106:18–26
    21. Siegert P, McLeish MJ, Baumann M, Iding H, Kneen MM, Kenyon GL, Pohl M (2005) Exchanging the substrat specificities of pyruvate decarboxylase from Zymomonas mobilis and benzoylformate decarboxylase from Pseudomonas putida. Protein Eng Des Sel 18:345–357
    22. Bradford MM (1976) Anal Biochem 72:248–254
    23. Helmholz H, Cartellieri S, He LZ, Thiesen PH, Niemeyer B (2003) J Chromatogr A 1006:127–135
    24. Hagen J (1992) Reaktionskinetik und Reaktordesign. In: Hopp V (ed) Chemische Reaktionstechnik: eine Einf眉hrung mit 脺bungen. VCH, Weinheim, pp 85–92
    25. Balny C, Masson P (1993) Effects of high pressure on proteins. Food Reviews International 9:611–628
    26. Balny C (1998) High pressure enzyme kinetics. In: Ludwig H (ed) Advances in high pressure bioscience and biotechnology. Springer, Heidelberg
    27. Knorr D, Heinz V, Buckow R (2006) High pressure application of food biopolymers. Biochim Biophys Acta 1764:619–631
    28. Meersman F, Dobson CM, Heremans K (2006) Protein unfolding, amyloid fibril formation and configurational energy landscapes under high pressure conditions. Chem Soc Rev 38:908–917
    29. Northrop DB (2002) Effects of high pressure on enzyme activity. Biochim Biophys Acta 1595:71–79
    30. Jansen J, Niemeyer B (2005) Automated high pressure plant for continuous flow through a fixed bed—investigation of hydrodynamic behaviour. J Supercrit Fluids 33:283–291
    31. Gocke D, Walter L, Gauchenova E, Kolter G, Knoll M, Berthold CL, Schneider G, Pleiss J, M眉ller M, Pohl M (2008) Rational protein design of ThDP-dependent enzymes-engineering stereoselectivity. ChembioChem 9:406–412
    32. Knoll M, M眉ller M, Pleiss J, Pohl M (2006) Factors mediating activity selectivity, and substrate specificity for the thiamin diphosphatedependent enzymes benzaldehyde lyase and benzoylformate decarboxylase. Chembiochem 7:1928–1934
    33. Polovnikova ES, McLeish MJ, Sergienko EA, Burgner JT, Anderson NL, Bera AK, Jordan F, Kenyon GL, Hasson MS (2003) Structural and kinetic analysis of catalysis by a thiamin diphosphate-dependent enzyme, benzoylformate decarboxylase. Biochemistry 42:1820–1830
    34. Berheide M (2010) Untersuchungen zur Enantioselektivit盲t Thiamindiphosphat abh盲ngiger Enzyme: Reaktionstechnische Optimierung der C–C Bindungsbildung. Disseration URN: urn:nbn:de:gbv:830-tubdok-9606. http://doku.b.tu-harburg.de/volltexte/2010/960/
  • 作者单位:1. Institute of Thermodynamics, Helmut-Schmidt-University Hamburg, Holstenhofweg 85, 22043 Hamburg, Germany2. Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestrasse 15, 21073 Hamburg, Germany
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Industrial Chemistry and Chemical Engineering
    Industrial and Production Engineering
    Waste Management and Waste Technology
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Food Science
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1615-7605
文摘
If an adequate biocatalyst is identified for a specific reaction, immobilization is one possibility to further improve its properties. The immobilization allows easy recycling, improves the enzyme performance, and it often enhances the stability of the enzyme. In this work, the immobilization of the benzoylformate decarboxylase (BFD) variant, BFD A460I-F464I, from Pseudomonas putida was accomplished on spherical silica. Silicagel is characterized by its high mechanical stability, which allows its application in different reactor types without restrictions. The covalently bound enzyme was characterized in terms of its activity, stability, and kinetics for the formation of chiral 2-hydroxypropiophenone (2-HPP) from benzaldehyde and acetaldehyde. Moreover, temperature as well as pressure dependency of immobilized BFD A460I-F464I activity and enantioselectivity were analyzed. The used wide-pore silicagel shows a good accessibility of the immobilized enzyme. The activity of the immobilized BFD A460I-F464I variant was determined to be 70% related to the activity of the free enzyme. Thereby, the enantioselectivity of the enzyme was not influenced by the immobilization. In addition, a pressure-induced change in stereoselectivity was found both for the free and for the immobilized enzyme. With increasing pressure, the enantiomeric excess (ee) of (R)-2-HPP can be increased from 44% (0.1 MPa) to 76% (200 MPa) for the free enzyme and from 43% (0.1 MPa) to 66% (200 MPa) for the immobilized enzyme.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700