Mathematical Modelling of Toxic Metal Uptake and Efflux Pump in Metal-Resistant Bacterium Bacillus cereus Isolated From Heavy Crude Oil
详细信息    查看全文
  • 作者:Dario R. Shaw (1)
    Jenny Dussan (1)

    1. Centro de Investigaciones Microbiol贸gicas 鈥?CIMIC
    ; Departamento de Ciencias Biol贸gicas ; Universidad de los Andes ; Cra 1 No 18 A-10 ; Building J- 206 ; Bogot谩 ; Colombia
  • 关键词:Bacillus cereus ; Toxic metals ; Efflux pump ; Bioaccumulation ; Biosorption ; Mathematical modelling
  • 刊名:Water, Air, and Soil Pollution
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:226
  • 期:4
  • 全文大小:5,974 KB
  • 参考文献:1. Abou-Shanab, RAI, Berkum, P, Angle, JS (2007) Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68: pp. 360-367 CrossRef
    2. Blattner, FR (1997) The complete genome sequence of Escherichia coli K-12. Science 277: pp. 1453-1462 CrossRef
    3. Camargo, FAO, Okeke, BC, Bento, FM, Frankenberger, WT (2005) Diversity of chromium-resistant bacteria isolated from soils contaminated with dichromate. Applied Soil Ecology 29: pp. 193-202 CrossRef
    4. Carlos, A., & Duta, F. P. (2001). Bioaccumulation of copper, zinc, cadmium and lead by / Bacillus sp., / Bacillus cereus, / Bacillus sphaericus and / Bacillus subtilis. Brazilian Journal of Microbiology, 32, 1鈥?. doi:10.1590/S1517-83822001000100001 .
    5. Choudhary, S, Sar, P (2009) Characterization of a metal resistant Pseudomonas sp. isolated from uranium mine for its potential in heavy metal (Ni2+, Co2+, Cu2+, and Cd2+) sequestration. Bioresource technology 100: pp. 2482-2492 CrossRef
    6. Chuan, MC, Shu, GY, Liu, JC (1996) Solubility of heavy metals in a contaminated soil: effects of redox potential and pH. Water, Air, and Soil Pollution 90: pp. 543-556 CrossRef
    7. 脟olak, F, Atar, N, Yaz谋c谋o臒lu, D, Olgun, A (2011) Biosorption of lead from aqueous solutions by Bacillus strains possessing heavy-metal resistance. Chemical Engineering Journal 173: pp. 422-428 CrossRef
    8. Collard, JM, Corbisier, P, Diels, L, Dong, Q, Jeanthon, C, Mergeay, M (1994) Plasmids for heavy metal resistance in Alcaligenes eutrophus CH34: mechanisms and applications. FEMS microbiology reviews 14: pp. 405-414 CrossRef
    9. Deng, X, Wang, P (2012) Isolation of marine bacteria highly resistant to mercury and their bioaccumulation process. Bioresource technology 121: pp. 342-347 CrossRef
    10. Desaunay, A, Martins, JMF (2014) Comparison of chemical washing and physical cell-disruption approaches to assess the surface adsorption and internalization of cadmium by Cupriavidus Metallidurans CH34. Journal of Hazardous Materials 30: pp. 231-238 CrossRef
    11. Duyck, C, Miekeley, N, Porto, CL, Szatmari, P (2002) Trace element determination in crude oil and its fractions by inductively coupled plasma mass spectrometry using ultrasonic nebulization of toluene solutions. Spectrochimica Acta Part B: Atomic Spectroscopy 57: pp. 1979-1990 CrossRef
    12. Gaballa, A, Helmann, JD (2003) Bacillus subtilis CPx-type ATPases: characterization of Cd, Zn, Co and Cu efflux systems. Biometals 16: pp. 497-505 CrossRef
    13. Guo, H, Luo, S, Chen, L, Xiao, X, Xi, Q, Wei, W (2010) Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource technology 101: pp. 8599-8605 CrossRef
    14. Hu, G, Li, J, Zeng, G (2013) Recent development in the treatment of oily sludge from petroleum industry: a review. Journal of hazardous materials 261: pp. 470-490 CrossRef
    15. Huang, F, Guo, C-L, Lu, G-N, Yi, X-Y, Zhu, L-D, Dang, Z (2014) Bioaccumulation characterization of cadmium by growing Bacillus cereus RC-1 and its mechanism. Chemosphere.
    16. Ivanova, N, Sorokin, A, Anderson, I, Galleron, N, Candelon, B, Kapatral, V (2003) Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423: pp. 87-91 CrossRef
    17. Jaros艂awiecka, A, Piotrowska-Seget, Z (2014) Lead resistance in micro-organisms. Microbiology (United Kingdom) 160: pp. 12-25
    18. Joo, J-H, Hassan, SHA, Oh, S-E (2010) Comparative study of biosorption of Zn2+ by Pseudomonas aeruginosa and Bacillus cereus. International Biodeterioration & Biodegradation 64: pp. 734-741 CrossRef
    19. Kihlken, MA, Singleton, C, Le Brun, NE (2008) Distinct characteristics of Ag鈥?鈥塧nd Cd2+ binding to CopZ from Bacillus subtilis. Journal of biological inorganic chemistry: JBIC: a publication of the Society of Biological Inorganic Chemistry 13: pp. 1011-1023 CrossRef
    20. Kriipsalu, M, Marques, M, Maastik, A (2008) Characterization of oily sludge from a wastewater treatment plant flocculation-flotation unit in a petroleum refinery and its treatment implications. Journal of Material Cycles and Waste Management 10: pp. 79-86 CrossRef
    21. Malik, A (2004) Metal bioremediation through growing cells. Environment international 30: pp. 261-278 CrossRef
    22. Mary Mangaiyarkarasi, MS, Vincent, S, Janarthanan, S, Subba Rao, T, Tata, BVR (2011) Bioreduction of Cr(VI) by alkaliphilic Bacillus subtilis and interaction of the membrane groups. Saudi journal of biological sciences 18: pp. 157-167 CrossRef
    23. Masaoka, Y, Ueno, Y, Morita, Y, Kuroda, T (2000) A two-component multidrug efflux pump, EbrAB, in Bacillus subtilis. Journal of Bacteriology 182: pp. 2307-2310 CrossRef
    24. Matias, VRF, Beveridge, TJ (2005) Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Molecular microbiology 56: pp. 240-251 CrossRef
    25. Merchante, R, Pooley, HM, Karamata, D (1995) A periplasm in Bacillus subtilis. Journal of bacteriology 177: pp. 6176-6183
    26. Mergeay, M, Monchy, S, Vallaeys, T, Auquier, V, Benotmane, A, Bertin, P (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiology Reviews 27: pp. 385-410 CrossRef
    27. Mergeay, M, Nies, D, Schlegel, HG, Gerits, J, Charles, P, Gijsegem, F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. Journal of bacteriology 162: pp. 328-334
    28. Michalak, I, Chojnacka, K, Marycz, K (2011) Using ICP-OES and SEM-EDX in biosorption studies. Mikrochimica acta 172: pp. 65-74 CrossRef
    29. Monchy, S, Benotmane, MA, Janssen, P, Vallaeys, T, Taghavi, S, Lelie, D, Mergeay, M (2007) Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. Journal of bacteriology 189: pp. 7417-7425 CrossRef
    30. Monsieurs, P, Moors, H, Houdt, R, Janssen, PJ, Janssen, A, Coninx, I (2011) Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network. Biometals 24: pp. 1133-1151 CrossRef
    31. Moore, CM, Helmann, JD (2005) Metal ion homeostasis in Bacillus subtilis. Current opinion in microbiology 8: pp. 188-195 CrossRef
    32. Nies, D. H. (2003). Efflux-mediated heavy metal resistance in prokaryotes. / FEMS Microbiology Reviews, 27(2鈥?), 313鈥?39. doi:10.1016/S0168-6445(03)00048-2 .
    33. 脰zdemir, S, Kilinc, E, Poli, A, Nicolaus, B, G眉ven, K (2009) Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub. sp. decanicus and Geobacillus thermoleovorans sub. sp. stromboliensis: equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal 152: pp. 195-206 CrossRef
    34. Pe帽a-Montenegro, TD, Duss谩n, J (2013) Genome sequence and description of the heavy metal tolerant bacterium Lysinibacillus sphaericus strain OT4b.31. Standards in genomic sciences 9: pp. 42-56 CrossRef
    35. Pi帽贸n-Castillo, HA, Brito, EMS, Go帽i-Urriza, M, Guyoneaud, R, Duran, R, Nevarez-Moorillon, GV (2010) Hexavalent chromium reduction by bacterial consortia and pure strains from an alkaline industrial effluent. Journal of applied microbiology 109: pp. 2173-2182 CrossRef
    36. Shivaji, S, Suresh, K, Chaturvedi, P, Dube, S, Sengupta, S (2005) Bacillus arsenicus sp. nov., an arsenic-resistant bacterium isolated from a siderite concretion in West Bengal, India. International journal of systematic and evolutionary microbiology 55: pp. 1123-1127 CrossRef
    37. Stigter, J, Haan, HP, Guicherit, R, Dekkers, CP, Daane, M (2000) Determination of cadmium, zinc, copper, chromium and arsenic in crude oil cargoes. Environmental Pollution 107: pp. 451-464 CrossRef
    38. Uversky, V. N., Kretsinger, R. H., & Permyakov, Ei. E. a. (2013). / Encyclopedia of metalloproteins (Vol. 150, pp. 1鈥?04). doi:10.1007/978-1-4614-1533-6
    39. Vel谩squez, L, Dussan, J (2009) Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. Journal of hazardous materials 167: pp. 713-716 CrossRef
    40. Villegas-Torres, MF, Bedoya-Reina, OC, Salazar, C, Vives-Florez, MJ, Dussan, J (2011) Horizontal arsC gene transfer among microorganisms isolated from arsenic polluted soil. International Biodeterioration & Biodegradation 65: pp. 147-152 CrossRef
    41. Ziagova, M, Dimitriadis, G, Aslanidou, D, Papaioannou, X, Litopoulou Tzannetaki, E, Liakopoulou-Kyriakides, M (2007) Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresource technology 98: pp. 2859-2865 CrossRef
    42. Zuber, B, Haenni, M, Ribeiro, T, Minnig, K, Lopes, F, Moreillon, P, Dubochet, J (2006) Granular layer in the periplasmic space of gram-positive bacteria and fine structures of Enterococcus gallinarum and Streptococcus gordonii septa revealed by cryo-electron microscopy of vitreous sections. Journal of bacteriology 188: pp. 6652-6660 CrossRef
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Terrestrial Pollution
    Hydrogeology
  • 出版者:Springer Netherlands
  • ISSN:1573-2932
文摘
The aim of this study was to describe the mechanisms that native Bacillus cereus M6 isolated from heavy crude oil oAPI gravity 11.5 uses to tolerate and/or resist toxic metals. Metal tolerance and removal of Pb(II), Cr(VI), and As(V) was determined. In addition, we evidenced the subcellular distribution of metals, the efflux pump kinetics, and morphological changes in metal-tolerant bacteria. B. cereus M6 exhibited strong tolerance and resistance to the metals evaluated and efficiently removed the metal content by operating efflux pumps and accumulating mainly in membrane fraction. Also, it was found that the model that best fit the efflux corresponds to an equation for resonant oscillations. B. cereus M6 uses mechanisms, including efflux pumps, intracellular and extracellular accumulation in parallel in order to maintain metal levels below a toxic threshold and overcome the effects of high concentrations. These findings are an approach of an energy-dependent efflux system to eliminate excessive amounts of crude oil-associated metals in Bacillus. B. cereus M6 may potentially be useful in designing improved strategies for the bioremediation of soils polluted with metals. Additionally, the prediction model developed would be useful for improving the monitoring of in vitro and in vivo bioremediation processes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700