Effects of Selenium on Morphological Changes in Candida utilis ATCC 9950 Yeast Cells
详细信息    查看全文
  • 作者:Marek Kieliszek ; Stanisław Błażejak…
  • 关键词:Selenium ; Morphology ; Candida utilis ; Yeast cells
  • 刊名:Biological Trace Element Research
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:169
  • 期:2
  • 页码:387-393
  • 全文大小:1,033 KB
  • 参考文献:1.Kieliszek M, Błażejak S (2013) Selenium: significance, and outlook for supplementation. Nutrition 29:713–718PubMed CrossRef
    2.Forceville X, Touati S, Le Toumelin P, Ducros V, Laporte F, Chancerelle Y, Agay D (2014) Elements of margin of safety, toxicity and action of sodium selenite in a lipopolysaccharide rat model. J Trace Elem Med Biol 28:303–310PubMed CrossRef
    3.Mániková D, Vlasáková D, Loduhová J, Letavayová L, Vigašova D, Krascsenitsová E, Vlčkova V, Brozmanová J, Chovanec M (2010) Investigations on the role of base excision repair and non-homologous end-joining pathways in sodium selenite-induced toxicity and mutagenicity in Saccharomyces cerevisiae. Mutagenesis 25:155–162PubMed CrossRef
    4.Seńczuk W (2005) Toksykologia współczesna. Wydawnictwo Lekarskie PZWL, Warszawa, pp. 435–440
    5.Fujs S, Semenic T, Raspor P (2009) The effect of ATP sulphurylase on the prooxidant properties of selenate in yeast Schizosaccharomyces pombe selenoenzyme. Food Technol Biotechnol 47:166–171
    6.Rosen BR, Liu ZJ (2009) Transport pathways for arsenic and selenium: a minireview. Environ Int 35:512–515PubMed PubMedCentral CrossRef
    7.McDermott JR, Rosen BP, Liu Z (2010) Jen1p: a high affinity selenite transporter in yeast. Mol Biol Cell 21:3934–3941PubMed PubMedCentral CrossRef
    8.Lazard M, Ha-Duong NT, Mounie S, Perrin R, Plateau P, Blanquet S (2011) Selenodiglutathione uptake by the Saccharomyces cerevisiae vacuolar ATP-binding cassette transporter Ycf1p. FEBS J 278:4112–4121PubMed CrossRef
    9.Kieliszek M, Błażejak S, Gientka I, Bzducha-Wróbel A (2015) Accumulation and metabolism of selenium by yeast cells. Appl Microbiol Biotechnol. doi:10.​1007/​s00253-015-6650-x PubMed PubMedCentral
    10.Mapelli V, Hillestrøm PR, Kapolna E, Larsen EH, Olsson L (2011) Metabolic and bioprocess engineering for production of selenized yeast with increased content of seleno-methylselenocysteine. Metab Eng 13:282–293PubMed CrossRef
    11.Brozmanová J, Mániková D, Vlčková V, Chovanec M (2010) Selenium: a double-edged sword for defense and offence in cancer. Arch Toxicol 84:919–938PubMed CrossRef
    12.Letavayová L, Vlasáková D, Spallholz JE, Brozmanová J, Chovanec M (2008) Toxicity and mutagenicity of selenium compounds in Saccharomyces cerevisiae. Mutat Res 638:1–10PubMed CrossRef
    13.Mániková D, Vlasáková D, Letavayová L, Klobučniková V, Griač P, Chovanec M (2012) Selenium toxicity toward yeast as assessed by microarray analysis and deletion mutant library screen: a role for DNA repair. Chem Res Toxicol 25:1598–1608PubMed CrossRef
    14.Seitomer E, Balar B, He D, Copeland PR, Kinzy TG (2008) Analysis of Saccharomyces cerevisiae null allele strains identifies a larger role for DNA damage versus oxidative stress pathways in growth inhibition by selenium. Mol Nutr Food Res 52:1305–1315PubMed PubMedCentral CrossRef
    15.Bzducha-Wróbel A, Kieliszek M, Błażejak S (2013) Chemical composition of the cell wall of probiotic and brewer’s yeast in response to cultivation medium with glycerol as a carbon source. Eur Food Res Technol 237:489–499CrossRef
    16.Volesky B, May-Phillips HA (1995) Biosorption of heavy metals by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 42:797–806PubMed CrossRef
    17.Gharieb MM, Wilkinson SC, Gadd MG (1995) Reduction of selenium oxyanions by unicellular, polymorphic and filamentous fungi: cellular location of reduced selenium and implications for tolerance. J Ind Microbiol 14(3–4):300–311CrossRef
    18.Rajashree K, Muthukumar T (2013) Preparation of selenium tolerant yeast Saccharomyces cerevisiae. J Microbiol Biotechnol Res 3:46–53
    19.Gharieb MM, Gadd GM (2004) Role of glutathione in detoxification of metal(loid)s by Saccharomyces cerevisiae. Biometals 17:183–188PubMed CrossRef
    20.Uden PC, Boakye HT, Kahakachchi C, Tyson JF (2004) Selective detection and identification of Se containing compounds—review and recent development. J Chromatogr A 24:85–93CrossRef
    21.Schmidt K, Wolfe DM, Stiller B, Pearce DA (2009) Cd2+, Mn2+, Ni2+ and Se2+ toxicity to Saccharomyces cerevisiae lacking YPK9p the orthologue of human ATP13A2. Biochem Biophys Res Commun 383:198–202PubMed PubMedCentral CrossRef
    22.Eide DJ, Clark S, Nair TM, Gehl M, Gribskov M, Guerinot ML, Harper JF (2005) Characterization of the yeast ionome: a genome-wide analysis of nutrient mineral and trace element homeostasis in Saccharomyces cerevisiae. Genome Biol 6:R77PubMed PubMedCentral CrossRef
    23.Gharieb MM, Gadd GM (1998) Evidence for the involvement of vacuolar activity in metal(loid) tolerance: vacuolar-lacking and -defective mutants of Saccharomyces cerevisiae display higher sensitivity to chromate, tellurite and selenite. Biometals 11:101–106PubMed CrossRef
    24.Zhang L, Li D, Gao P (2012) Expulsion of selenium/protein nanoparticles through vesicle-like structures by Saccharomyces cerevisiae under microaerophilic environment. World J Microbiol Biotechnol 28:3381–3386PubMed CrossRef
    25.Porat A, Sagiv Y, Elazar Z (2000) A 56-kDa selenium-binding protein participates in intra-Golgi protein transport. J Biol Chem 275:14457–14465PubMed CrossRef
    26.Gientka I, Madejska A (2013) Ocena przydatności szczepów drożdży wyizolowanych z kefirów do syntezy polimerów zewnątrzkomórkowych. Zesz Probl Postep Nauk Rol 574:19–27
    27.Simon M, Waszyk-Nowaczyk M, Książek K (2011) Starzenie się organizmów prokariotycznych. Postępy Hig Med Dośw 65:509–514CrossRef
    28.Duszkiewicz-Reinhard W, Gniewosz M, Błażejak S, Bańkowski A (2002) Badania zdolności wiązania magnezu przez drożdże piekarskie Saccharomyces cerevisiae w hodowli stacjonarnej. Acta Sci Pol Technol Aliment 1:17–26
    29.Pawlik-Skowrońska B (2002) Tajemnice odporności glonów i sinic na toksyczne metale ciężkie (Mystery of algal resistance to heavy metals). Kosmos 51:175–184
    30.Gerrard TL, Telford JN, Williams HH (1974) Detection of selenium deposits in Escherichia coli by electron microscopy. J Bacteriol 119:1057–1060PubMed PubMedCentral
    31.Mazzoni C, Falcone C (2008) Caspase-dependent apoptosis in yeast. Biochim Biophys Acta 1783:1320–1327PubMed CrossRef
    32.Martínez-Rodríguez AJ, Polo MC, Carrascosa AV (2001) Structural and ultrastructural changes in yeast cells during autolysis in a model wine system and in sparkling wines. Int J Food Microbiol 71:45–51PubMed CrossRef
    33.Dilsiz N, Celik S, Yilmazo O, Digrak M (1997) The effects of selenium, vitamin E and their combination on the composition of fatty acids and proteins. Cell Biochem Funct 15:265–259PubMed CrossRef
    34.Kieliszek M, Błażejak S, Jędrzejczak R (2012) Wiązanie selenu przez drożdże paszowe Candida utilis ATCC 9950. Bromatol Chem Toksykol 45:628–633
    35.Letavayová L, Vlcková V, Brozmanová J (2006) Selenium: from cancer prevention to DNA damage. Toxicology 227:1–14PubMed CrossRef
    36.Kieliszek M, Błażejak S, Bzducha-Wróbel (2015) Influence of selenium content in the culture medium on protein profile of yeast cells Candida utilis ATCC 9950. Oxid Med Cell Longev. doi:10.​1155/​2015/​659750
  • 作者单位:Marek Kieliszek (1)
    Stanisław Błażejak (1)
    Anna Bzducha-Wróbel (1)
    Agnieszka Kurcz (1)

    1. Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
  • 刊物主题:Biochemistry, general; Biotechnology; Nutrition; Oncology;
  • 出版者:Springer US
  • ISSN:1559-0720
文摘
This paper presents the results of microscopic examinations of the yeast cells cultured in yeast extract–peptone–dextrose (YPD) media supplemented with sodium selenite(IV). The analysis of the morphological changes in yeast cells aimed to determine whether the selected selenium doses and culturing time may affect this element accumulation in yeast cell structures in a form of inorganic or organic compounds, as a result of detoxification processes. The range of characteristic morphological changes in yeasts cultivated in experimental media with sodium selenite(IV) was observed, including cell shrinkage and cytoplasm thickening of the changes within vacuole structure. The processes of vacuole disintegration were observed in aging yeast cells in culturing medium, which may indicate the presence of so-called ghost cells lacking intracellular organelles The changes occurring in the morphology of yeasts cultured in media supplemented with sodium selenite were typical for stationary phase of yeast growth. From detailed microscopic observations, larger surface area of the cell (6.03 μm2) and yeast vacuole (2.17 μm2) were noticed after 24-h culturing in the medium with selenium of 20 mg Se4+/L. The coefficient of shape of the yeast cells cultured in media enriched with sodium selenite as well as in the control YPD medium ranged from 1.02 to 1.22. Elongation of cultivation time (up to 48 and 72 h) in the media supplemented with sodium selenite caused a reduction in the surface area of the yeast cell and vacuole due to detoxification processes. Keywords Selenium Morphology Candida utilis Yeast cells

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700