Mercury species accumulation and trophic transfer in biological systems using the Almadén mining district (Ciudad Real, Spain) as a case of study
详细信息    查看全文
  • 作者:M. J. Patiño Ropero ; N. Rodríguez Fariñas…
  • 关键词:Mercury ; Speciation ; Selenium ; Terrestrial animal ; Tissues ; Pollution
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:23
  • 期:7
  • 页码:6074-6081
  • 全文大小:570 KB
  • 参考文献:Bårregard L, Sällsten G, Conradi N (1999) Tissue levels on mercury determined in a deceased worker after occupational exposure. Int Arch Occup Environ Health 72:169–173CrossRef
    Berzas Nevado JJ, Rodríguez Martín-Doimeadios RC, Krupp EM, Guzmán Bernardo FJ, Rodríguez Fariñas N, Jiménez Moreno M, Wallace D, Patiño Ropero MJ (2011) Comparison of gas chromatography hyphenated techniques for mercury speciation analysis. J Chromatogr A 1218:4545–4551
    Berzas Nevado JJ, Rodríguez Martín-Doimeadios RC, Mateo R, Rodríguez Fariñas N, Rodríguez-Estival J, Patiño-Ropero MJ (2012a) Mercury exposure and mechanism of response in large game using the Almadén mercury mining area (Spain) as a case study. Environ Res 112:58–66CrossRef
    Berzas Nevado JJ, Rodríguez Martín-Doimeadios RC, Guzmán Bernardo FJ, Rodríguez Fariñas N, Patiño Ropero MJ (2012b) Mercury speciation analysis in terrestrial animal tissues. Talanta 99:859–864
    BerzasNevado JJ, García Bermejo LF, Rodríguez Martín-Doimeadios RC (2003) Distribution of mercury in the aquatic environment at Almadén, Spain. Environ Pollut 122:261–271CrossRef
    BerzasNevado JJ, Rodríguez Martín-Doimeadios RC, Jiménez Moreno M (2009) Mercury speciation in the Valdeazogues River–La Serena reservoir system: influence of Almadén (Spain) historic mining activities. Sci Total Environ 407:2372–2382CrossRef
    Cabañero AI, Madrid Y, Cámara C (2005) Effect of animal feed enriched with Se and clays on Hg bioaccumulation in chickens: in vivo experimental study. J Agric Food Chem 53:2125–2132
    Clarkson TW, Magos L, Gary JM (2003) The toxicology of mercury — current exposures and clinical manifestations. N Engl J Med 349:1731–1737CrossRef
    Cornelis R, Caruso J, Crews H, Heuman K (2005) Handbook of elemental speciation. II, Species in the environment, food, medicine and occupational health. Wiley, ChichesterCrossRef
    Cristol DA, Brasso RL, Condon AM, Fovargue RE, Friedman SL, Halliger KK, Moroe AP, White AE (2008) The movement of aquatic mercury through terrestrial food webs. Science 320:335CrossRef
    Dröge S, Limper U, Emtiazi F, Schönig I, Pavlus N, Drzyzga O, Fischer U, König H (2005) In vitro and in vivo sulfate reduction in the gut contents of the termite Mastotermes darwiniensis and the rose-chafer Pachnoda marginata. J Gen Appl Microbiol 51:57–64
    Fitzgerald WF, Mason RP (1996) In: Baeyens V, Ebinghaus R, Vasiliev O (eds) Global and regional cycles: sources, fluxes and mass balances. Kluwer Academic Publishers, Dordrecht, pp 85–108CrossRef
    FrØslie A, Siverstsen T, Lochmiller R (2001) Perissodactyla and artiodactyla. In: Shore RF, Rattner BA (eds) Ecotoxicology of wild mammals. Wiley, Chichester, pp 497–550
    Gailer J (2007) Arsenic–selenium and mercury–selenium bonds in biology. Coord Chem Rev 251:234–254CrossRef
    Gailer J, George GN, Pickering IJ, Madden S, Prince RC, Yu EY, Denton MB, Younis HS, Aposhian HV (2000) Structural basis of the antagonism between inorganic mercury and selenium in mammals. Chem Res Toxicol 13:1135–1142CrossRef
    Gnamus A, Horvat M (1999) Mercury contaminated sites: characterization, risk assessment and remediation. In: Ebinghaus R, Turner RR, de Lacerda LD, Vasiliev O, Salomons W (eds) Springer environmental book series. Springer-Verlag, Berlin, pp 281–320
    Gnamus A, Byrne AR, Horvat M (2000) Mercury in the soil-plant-deer-predator food chain of a temperate forest in Slovenia. Environ Sci Technol 34:3337–3345CrossRef
    Gray JE, Hines ME, Higueras PL, Adatto I, Lasorsa BK (2004) Mercury speciation and microbial transformations in mine waters, stream sediments and surface waters at the Almadén mining district, Spain. Environ Sci Technol 38:4285–4292
    Hintelmann H (2010) Organomercurials. Their Formation and Pathways in the Environment. In: Sigel A, Sigel H, Sigel RKO (eds) Organometallics in environment and toxicology: volume 7 of metal ions in life sciences, volume 7. Royal Society of Chemistry, Cambridge, pp 365–401CrossRef
    Horai S, Minagawa M, Ozaki H, Watanabe I, Takeda Y, Yamada K, Ando T, Akiba S, Abe S, Kuno K (2006) Accumulation of Hg and other heavy metals in the Javan mongoose (Herpestes javanicus) capture on Amamioshima Island, Japan. Chemosphere 65:657–665
    Kaschak E, Knopf B, Petersen JH, Bings NH, König H (2014) Biotic methylation of mercury by intestinal and sulfate-reducing bacteria and their potential role in mercury accumulation in the tissue of the soil-living Eisenia foetida. Soil Biol Biochem 69:202–211CrossRef
    Khan MAK, Wang F (2009) Mercury-selenium compounds and their toxicological significance: toward a molecular understanding of the mercury-selenium antagonism. Environ Toxicol Chem 28:1567–1577CrossRef
    Klevezal' GA, Kleinenberg SE (1969) Age determination of mammals from annual layers in teeth and bones. Israel Program for Scientific Translations, Jerusalem, Israel
    Lobinski R, Becker JS, Haraguchi H, Sarkar B (2010) Metallomics: guidelines for terminology and critical evaluation of analytical chemistry approaches (IUPAC Technical Report). Pure Appl Chem 82:493–504CrossRef
    Millán R, Gamarra R, Schmid T, Sierra MJ, Quejido AJ, Sánchez DM, Cardona AI, Fernández M, Vera R (2006) Mercury content in vegetation and soils of the Almadén mining area (Spain). Sci Total Environ 368:79–87CrossRef
    Millán J, Mateo R, Taggart MA, López-Bao JV, Viota M, Monsalve L, Camarero PR, Blázquez E, Jiménez B (2008) Levels of heavy metals and metalloids in critically endangered Iberian lynx and other wild carnivores from Southern Spain. Sci Total Environ 399:193–201CrossRef
    Millán R, Lominchar MA, López-Tejedor I, Rodríguez-Alonso J, Schmid T, Sierra MJ (2012) Behaviour of mercury in the Valdeazogues riverbank soil and transfer to Nerium oleander L. J Geochem Explor 123:136–142CrossRef
    Millán R, Lominchar MA, Rodríguez-Alonso J, Schmid T, Sierra MJ (2014) Riparian vegetation role in mercury uptake (Valdeazogues River, Almadén, Spain). J Geochem Explor 140:104–110CrossRef
    Parks JM, Johs A, Podar M, Bridou R, Hurt JRA, Smith SD, Tomanicek SJ, Qian Y, Brown SD, Brandt CC, Palumbo AV, Smith JC, Wall JD, Elias DA, Liang L (2013) The genetic basis for bacterial mercury methylation. Science 339:1332–1335CrossRef
    Reglero MM, Taggart MA, Monsalve-González L, Mateo R (2009) Heavy metal exposure in large game from a lead mining area: effects on oxidative stress and fatty acid composition in liver. Environ Pollut 157:1388–1395CrossRef
    Rieder SR, Brunner I, Daniel O, Liu B, Frey B (2013) Methylation of mercury in earthworms and the effect of mercury on the associated bacterial communities. PLoS One 8(4):e61215CrossRef
    Rodríguez Martin-Doimeadios RC, Wasserman JC, García Bermejo LF, Amouroux D, BerzasNevado JJ, Donard OFX (2000) Chemical availability of mercury in stream sediments from the Almadén area, Spain. J Environ Monit 2:360–366CrossRef
    Sáenz de Buruaga M, Lucio AJ, Purroy FJ (1991) Reconocimiento de sexo y edad en especies cinegéticas. Diputación Foral de Álava, Vitoria
    Watras CJ, Huckabee JW (1992) Mercury pollution: integration and synthesis. Lewis Publishers, Boca Raton
    WHO (2011) Evaluation of certain food additives and contaminants. Seventy-second report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series No. 959
    Yannone SM, Hartung S, Menon AL, Adams MWW, Tainer JA (2012) Metals in biology: defining metalloproteomes. Curr Opin Biotechnol 23:89–95CrossRef
  • 作者单位:M. J. Patiño Ropero (1)
    N. Rodríguez Fariñas (1)
    R. Mateo (2)
    J. J. Berzas Nevado (1)
    R. C. Rodríguez Martín-Doimeadios (1)

    1. Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, 45071, Toledo, Spain
    2. Instituto de Recursos Cinegéticos IREC-CSIC-UCLM, 13071, Ciudad Real, Spain
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Industrial Pollution Prevention
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7499
文摘
The impact of mercury (Hg) pollution in the terrestrial environments and the terrestrial food chains including the impact on human food consumption is still greatly under-investigated. In particular, studies including Hg speciation and detoxification strategies in terrestrial animals are almost non-existing, but these are key information with important implications for human beings. Therefore, in this work, we report on Hg species (inorganic mercury, iHg, and monomethylmercury, MeHg) distribution among terrestrial animal tissues obtained from a real-world Hg exposure scenario (Almadén mining district, Spain). Thus, we studied Hg species (iHg and MeHg) and total selenium (Se) content in liver and kidney of red deer (Cervus elaphus; n = 41) and wild boar (Sus scrofa; n = 16). Similar mercury species distribution was found for both red deer and wild boar. Major differences were found between tissues; thus, in kidney, iHg was clearly the predominant species (more than 81 %), while in liver, the species distribution was less homogeneous with a percentage of MeHg up to 46 % in some cases. Therefore, Hg accumulation and MeHg transfer were evident in terrestrial ecosystems. The interaction between total Se and Hg species has been evaluated by tissue and by animal species. Similar relationships were found in kidney for both Hg species in red deer and wild boar. However, in liver, there were differences between animals. The possible underlying mechanisms are discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700