Promotion of the Clostridium acetobutylicum ATCC 824 growth and acetone–butanol–ethanol fermentation by flavonoids
详细信息    查看全文
  • 作者:Lan Wang (1)
    Menglei Xia (1)
    Lianhua Zhang (1)
    Hongzhang Chen (1)
  • 关键词:Clostridium acetobutyliucm ATCC 824 ; Acetone–butanol–ethanol fermentation ; Flavonoids ; Agriculture waste exploitation
  • 刊名:World Journal of Microbiology and Biotechnology
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:30
  • 期:7
  • 页码:1969-1976
  • 全文大小:
  • 参考文献:1. Anderson RF, Amarasinghe C, Fisher LJ, Mak WB, Packer JE (2000) Reduction in free-radical-induced DNA strand breaks and base damage through fast chemical repair by flavonoids. Free Radical Res 33(1):91-03 CrossRef
    2. Assobhei O, El Kanouni A, Ismaili M, Loutfi M, Petitdemange H (1998) Effect of acetic and butyric acids on the stability of solvent and spore formation by / Clostridium acetobutylicum ATCC 824 during repeated subculturing. J Ferment Bioeng 85(2):209-12. doi:10.1016/S0922-338x(97)86769-4 CrossRef
    3. Cao G, Sofic E, Prior RL (1997) Antioxidant and prooxidant behavior of flavonoids: structure–activity relationships. Free Radic Biol Med 22(5):749-60 CrossRef
    4. Chen CK, Blaschek HP (1999) Acetate enhances solvent production and prevents degeneration in / Clostridium beijerinckii BA101. Appl Microbiol Biot 52(2):170-73
    5. Chen X, Jiang S, Zheng Z, Pan L, Luo S (2012) Effects of culture redox potential on succinic acid production by / Corynebacterium crenatum under anaerobic conditions. Process Biochem 47(8):1250-255. doi:10.1016/j.procbio.2012.04.026 CrossRef
    6. Du C, Zhang Y, Li Y, Cao Z (2007) Novel redox potential-based screening strategy for rapid isolation of / Klebsiella pneumoniae mutants with enhanced 1,3-propanediol-producing capability. Appl Environ Microbiol 73(14):4515-521 CrossRef
    7. Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2(12):1525-534 CrossRef
    8. Edenharder R, Grünhage D (2003) Free radical scavenging abilities of flavonoids as mechanism of protection against mutagenicity induced by tert-butyl hydroperoxide or cumene hydroperoxide in / Salmonella typhimurium TA102. Mutat Res Rev Mutat 540(1):1-8 CrossRef
    9. Ezeji TC, Qureshi N, Blaschek HP (2004) Butanol fermentation research: upstream and downstream manipulations. Chem Rec 4(5):305-14 CrossRef
    10. Ezeji T, Milne C, Price ND, Blaschek HP (2010) Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl Microbiol Biotechnol 85(6):1697-712 CrossRef
    11. Formanek J, Mackie R, Blaschek HP (1997) Enhanced butanol production by / Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose. Appl Environ Microbiol 63(6):2306-310
    12. Green EM (2011) Fermentative production of butanol-the industrial perspective. Curr Opin Biotechnol 22(3):337-43 CrossRef
    13. Iglewski BH, Kabat D (1975) NAD-dependent inhibition of protein synthesis by / Pseudomonas aeruginosa toxin. Proc Natl Acad Sci USA 72(6):2284-288 CrossRef
    14. Ishige K, Schubert D, Sagara Y (2001) Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radical Bio Med 30(4):433-46 CrossRef
    15. Jang YS, Malaviya A, Lee SY (2013) Acetone–butanol–ethanol production with high productivity using / Clostridium acetobutylicum BKM19. Biotechnol Bioeng 110(6):1646-653 CrossRef
    16. Jones DT, Woods DR (1986) Acetone–butanol fermentation revisited. Microbiol Rev 50(3540574):484-24
    17. Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13(4):353-63 CrossRef
    18. Lima JF, Delerue-Matos C, Carmo Vaz M (1999) Flow-injection analysis of Kjeldahl nitrogen in milk and dairy products by potentiometric detection. Anal Chim Acta 385(1):437-41 CrossRef
    19. Liu C-G, Xue C, Lin Y-H, Bai F-W (2013) Redox potential control and applications in microaerobic and anaerobic fermentations. Biotechnol Adv 31(2):257-65. doi:10.1016/j.biotechadv.2012.11.005 CrossRef
    20. Mann MS, Lütke-Eversloh T (2013) Thiolase engineering for enhanced butanol production in / Clostridium acetobutylicum. Biotechnol Bioeng 110(3):887-97 CrossRef
    21. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura SI, Lee YC (2005) Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal Biochem 339(1):69-2 CrossRef
    22. Nakashimada Y, Rachman M, Kakizono T, Nishio N (2002) Hydrogen production of / Enterobacter aerogenes altered by extracellular and intracellular redox states. Int J Hydrog Energy 27(11):1399-405 CrossRef
    23. Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74(4):418-25
    24. Oteiza PI, Erlejman AG, Verstraeten SV, Keen CL, Fraga CG (2005) Flavonoid-membrane interactions: a protective role of flavonoids at the membrane surface? Clin Dev Immunol 12(1):19-5 CrossRef
    25. Peguin S, Soucaille P (1996) Modulation of metabolism of / Clostridium acetobutylicum grown in chemostat culture in a three-electrode potentiostatic system with methyl viologen as electron carrier. Biotechnol Bioeng 51(3):342-48 CrossRef
    26. Qureshi N, Blaschek H (2001) ABE production from corn: a recent economic evaluation. J Ind Microbiol Biotechnol 27(5):292-97 CrossRef
    27. Qureshi N, Ezeji TC (2008) Butanol, ‘a superior biofuel-production from agricultural residues (renewable biomass): recent progress in technology. Biofuel Bioprod Biorefin 2(4):319-30 CrossRef
    28. Qureshi N, Hughes S, Maddox I, Cotta M (2005) Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess Biosyst Eng 27(4):215-22 CrossRef
    29. Soni BK, Soucaille P, Goma G (1987) Continuous acetone-butanol fermentation: a global approach for the improvement in the solvent productivity in synthetic medium. Appl Microbiol Biot 25(4):317-21
    30. Stapleton AE, Walbot V (1994) Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage. Plant Physiol 105(3):881-89 CrossRef
    31. Tashiro Y, Takeda K, Kobayashi G, Sonomoto K, Ishizaki A, Yoshino S (2004) High butanol production by / Clostridium saccharoperbutylacetonicum N1- in fed-batch culture with pH-stat continuous butyrate and glucose feeding method. J Biosci Bioeng 98(4):263-68
    32. Thang VH, Kanda K, Kobayashi G (2010) Production of acetone-butanol-ethanol (ABE) in direct fermentation of cassava by / Clostridium saccharoperbutylacetonicum N1-. Appl Biochem Biotech 161(1-):157-70
    33. Vasconcelos I, Girbal L, Soucaille P (1994) Regulation of carbon and electron flow in / Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J Bacteriol 176(5):1443-450
    34. Wang Y, Blaschek HP (2011) Optimization of butanol production from tropical maize stalk juice by fermentation with / Clostridium beijerinckii NCIMB 8052. Bioresour Technol 102(21):9985-990 CrossRef
    35. Wang L, Chen HZ (2011) Acetone–butanol–ethanol fermentation and isoflavone extraction using kudzu roots. Biotechnol Bioproc E 16(4):739-45. doi:10.1007/s12257-010-0347-x CrossRef
    36. Wang S, Zhu Y, Zhang Y, Li Y (2012) Controlling the oxidoreduction potential of the culture of / Clostridium acetobutylicum leads to an earlier initiation of solventogenesis, thus increasing solvent productivity. Appl Microbiol Biot 93(3):1021-030 CrossRef
    37. Welch RW, Rudolph FB, Papoutsakis ET (1989) Purification and characterization of the NADH-dependent butanol dehydrogenase from / Clostridium acetobutylicum ATCC 824. Arch Biochem Biophys 273(2):309-18 CrossRef
    38. Wietzke M, Bahl H (2012) The redox-sensing protein Rex, a transcriptional regulator of solventogenesis in / Clostridium acetobutylicum. Appl Microbiol Biot 96(3):749-61 CrossRef
    39. Xue C, Zhao J, Lu C, Yang ST, Bai F, Tang I (2012) High-titer / n-butanol production by / Clostridium acetobutylicum JB200 in fed-batch fermentation with intermittent gas stripping. Biotechnol Bioeng 109(11):2746-756 CrossRef
    40. Yu Y, Wang YH, Chu J, Zhang YP, Zhang SL (2007) The influence of controlling redox potential on ethanol production by / Saccharomyces cerevisiae. Chin J Biotechnol 23(5):878-84 CrossRef
    41. Yu M, Zhang Y, Tang I, Yang ST (2011) Metabolic engineering of / Clostridium tyrobutyricum for butanol production. Metab Eng 13(4):373-82 CrossRef
  • 作者单位:Lan Wang (1)
    Menglei Xia (1)
    Lianhua Zhang (1)
    Hongzhang Chen (1)

    1. State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
  • ISSN:1573-0972
文摘
An unexpected promotion effect of Ginkgo leaf on the growth of Clostridium acetobutylicum ATCC 824 and acetone–butanol–ethanol (ABE) fermentation was investigated. Component analysis of Ginkgo leaf was carried out and flavonoids were determined as the potential key metabolites. Then the flavonoids feeding experiments were carried out. Results showed that addition of only 10?mg/L flavonoids to the fermentation broth can promote butanol and ABE titre up to 14.5 and 17.8?g/L after 5?days of fermentation, that is, 74 and 68?% higher than the control. A 2.2-fold biomass also has been achieved. Furthermore, by employing such novel founding, we easily exploited flavonoids from soybean and some agriculture wastes as the wide-distributed and economic feasible ABE fermentation promoter. The mechanism of the above effects was investigated from the perspective of oxidation–reduction potential. This work opens a new way in the efforts to increase the titer of butanol.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700