Genetic heterogeneity in 26 infants with a hypomyelinating leukodystrophy
详细信息    查看全文
  • 作者:Natsuko Arai-Ichinoi ; Mitsugu Uematsu ; Ryo Sato ; Tasuku Suzuki…
  • 刊名:Human Genetics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:135
  • 期:1
  • 页码:89-98
  • 全文大小:706 KB
  • 参考文献:Abe J, Nakamura K, Nishikomori R et al (2014) A nationwide survey of Aicardi-Goutières syndrome patients identifies a strong association between dominant TREX1 mutations and chilblain lesions: Japanese cohort study. Rheumatology (Oxford) 53:448–458. doi:10.​1093/​rheumatology/​ket372 CrossRef
    Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249. doi:10.​1038/​nmeth0410-248 PubMed PubMedCentral CrossRef
    Altarescu G, Sun M, Moore DF et al (2002) The neurogenetics of mucolipidosis type IV. Neurology 59:306–313PubMed CrossRef
    Barcia G, Fleming MR, Deligniere A et al (2012) De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet 44:1255–1259. doi:10.​1038/​ng.​2441 PubMed PubMedCentral CrossRef
    Barkovich AJ (2000) Concepts of myelin and myelination in neuroradiology. AJNR Am J Neuroradiol 21:1099–1109PubMed
    Berger J, Moser HW, Forss-Petter S (2001) Leukodystrophies: recent developments in genetics, molecular biology, pathogenesis and treatment. Curr Opin Neurol 14:305–312PubMed CrossRef
    Cooper GM, Goode DL, Ng SB et al (2010) Single-nucleotide evolutionary constraint scores highlight disease-causing mutations. Nat Methods 7:250–251. doi:10.​1038/​nmeth0410-250 PubMed PubMedCentral CrossRef
    Frei KP, Patronas NJ, Crutchfield KE et al (1998) Mucolipidosis type IV: characteristic MRI findings. Neurology 51:565–569PubMed CrossRef
    Hamilton EM, Polder E, Vanderver A et al (2014) Hypomyelination with atrophy of the basal ganglia and cerebellum: further delineation of the phenotype and genotype–phenotype correlation. Brain 137:1921–1930. doi:10.​1093/​brain/​awu110 PubMed PubMedCentral CrossRef
    Harting I, Seitz A, Rating D et al (2009) Abnormal myelination in Angelman syndrome. Eur J Paediatr Neurol 13:271–276. doi:10.​1016/​j.​ejpn.​2008.​04.​005 PubMed CrossRef
    Hersheson J, Mencacci NE, Davis M et al (2013) Mutations in the autoregulatory domain of β-tubulin 4a cause hereditary dystonia. Ann Neurol 73:546–553. doi:10.​1002/​ana.​23832 PubMed PubMedCentral CrossRef
    Ishii A, Shioda M, Okumura A et al (2013) A recurrent KCNT1 mutation in two sporadic cases with malignant migrating partial seizures in infancy. Gene 531:467–471. doi:10.​1016/​j.​gene.​2013.​08.​096 PubMed CrossRef
    Kadalayil L, Rafiq S, Rose-Zerilli MJJ et al (2015) Exome sequence read depth methods for identifying copy number changes. Brief Bioinform 16:380–392. doi:10.​1093/​bib/​bbu027 PubMed CrossRef
    Kaye EM (2001) Update on genetic disorders affecting white matter. Pediatr Neurol 24:11–24. doi:10.​1016/​S0887-8994(00)00232-0 PubMed CrossRef
    Kohlschütter A, Eichler F (2011) Childhood leukodystrophies: a clinical perspective. Expert Rev Neurother 11:1485–1496. doi:10.​1586/​ern.​11.​135 PubMed CrossRef
    Loevner LA, Shapiro RM, Grossman RI et al (1996) White matter changes associated with deletions of the long arm of chromosome 18 (18q − syndrome): a dysmyelinating disorder? AJNR Am J Neuroradiol 17:1843–1848PubMed
    Miyatake S, Osaka H, Shiina M et al (2014) Expanding the phenotypic spectrum of TUBB4A-associated hypomyelinating leukoencephalopathies. Neurology 82:2230–2237. doi:10.​1212/​WNL.​0000000000000535​ PubMed CrossRef
    Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814PubMed PubMedCentral CrossRef
    Numata Y, Gotoh L, Iwaki A et al (2014) Epidemiological, clinical, and genetic landscapes of hypomyelinating leukodystrophies. J Neurol 261:752–758. doi:10.​1007/​s00415-014-7263-5 PubMed CrossRef
    Parikh S, Bernard G, Leventer RJ et al (2015) A clinical approach to the diagnosis of patients with leukodystrophies and genetic leukoencephelopathies. Mol Genet Metab 114:501–515. doi:10.​1016/​j.​ymgme.​2014.​12.​434 PubMed CrossRef
    Peters SU, Kaufmann WE, Bacino CA et al (2011) Alterations in white matter pathways in Angelman syndrome. Dev Med Child Neurol 53:361–367. doi:10.​1111/​j.​1469-8749.​2010.​03838.​x PubMed PubMedCentral CrossRef
    Pouwels PJW, Vanderver A, Bernard G et al (2014) Hypomyelinating leukodystrophies: translational research progress and prospects. Ann Neurol 76:5–19. doi:10.​1002/​ana.​24194 PubMed CrossRef
    Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–423. doi:10.​1038/​gim.​2015.​30 PubMed PubMedCentral CrossRef
    Saitsu H, Osaka H, Sasaki M et al (2011) Mutations in POLR3A and POLR3B encoding RNA polymerase III subunits cause an autosomal-recessive hypomyelinating leukoencephalopathy. Am J Hum Genet 89:644–651. doi:10.​1016/​j.​ajhg.​2011.​10.​003 PubMed PubMedCentral CrossRef
    Schiffmann R, van der Knaap MS (2009) Invited article: an MRI-based approach to the diagnosis of white matter disorders. Neurology 72:750–759. doi:10.​1212/​01.​wnl.​0000343049.​00540.​c8 PubMed PubMedCentral CrossRef
    Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11:361–362. doi:10.​1038/​nmeth.​2890 PubMed CrossRef
    Shiihara T, Watanabe M, Moriyama K et al (2014) A novel PLP1 frameshift mutation causing a milder form of Pelizaeus-Merzbacher disease. Brain Dev 37:455–458. doi:10.​1016/​j.​braindev.​2014.​06.​011 PubMed CrossRef
    Simons C, Wolf NI, McNeil N et al (2013) A de novo mutation in the β-tubulin gene TUBB4A results in the leukoencephalopathy hypomyelination with atrophy of the basal ganglia and cerebellum. Am J Hum Genet 92:767–773. doi:10.​1016/​j.​ajhg.​2013.​03.​018 PubMed PubMedCentral CrossRef
    Steenweg ME, Vanderver A, Blaser S et al (2010) Magnetic resonance imaging pattern recognition in hypomyelinating disorders. Brain 133:2971–2982. doi:10.​1093/​brain/​awq257 PubMed PubMedCentral CrossRef
    Sugita K, Suzuki N, Kojima T et al (1987) Cockayne syndrome with delayed recovery of RNA synthesis after ultraviolet irradiation but normal ultraviolet survival. Pediatr Res 21:34–37. doi:10.​1203/​00006450-198701000-00009 PubMed CrossRef
    Tada H, Takanashi J (2014) MR spectroscopy in 18q(−) syndrome suggesting other than hypomyelination. Brain Dev 36:57–60. doi:10.​1016/​j.​braindev.​2012.​12.​003 PubMed CrossRef
    Tan R, Wang Y, Kleinstein SE et al (2014) An evaluation of copy number variation detection tools from whole-exome sequencing data. Hum Mutat 35:899–907. doi:10.​1002/​humu.​22537 PubMed CrossRef
    Tétreault M, Choquet K, Orcesi S et al (2011) Recessive mutations in POLR3B, encoding the second largest subunit of Pol III, cause a rare hypomyelinating leukodystrophy. Am J Hum Genet 89:652–655. doi:10.​1016/​j.​ajhg.​2011.​10.​006 PubMed PubMedCentral CrossRef
    Vanderver A, Simons C, Schmidt JL et al (2014) Identification of a novel de novo p.Phe932Ile KCNT1 mutation in a patient with leukoencephalopathy and severe epilepsy. Pediatr Neurol 50:112–114. doi:10.​1016/​j.​pediatrneurol.​2013.​06.​024 PubMed PubMedCentral CrossRef
    Vanderver A, Prust M, Tonduti D et al (2015) Case definition and classification of leukodystrophies and leukoencephalopathies. Mol Genet Metab 114:494–500. doi:10.​1016/​j.​ymgme.​2015.​01.​006 PubMed CrossRef
    Wakabayashi K, Gustafson AM, Sidransky E, Goldin E (2011) Mucolipidosis type IV: an update. Mol Genet Metab 104:206–213. doi:10.​1016/​j.​ymgme.​2011.​06.​006 PubMed PubMedCentral CrossRef
    Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164. doi:10.​1093/​nar/​gkq603 PubMed PubMedCentral CrossRef
  • 作者单位:Natsuko Arai-Ichinoi (1)
    Mitsugu Uematsu (1)
    Ryo Sato (1)
    Tasuku Suzuki (1)
    Hiroki Kudo (1)
    Atsuo Kikuchi (1)
    Naomi Hino-Fukuyo (1)
    Mitsuyo Matsumoto (2) (3)
    Kazuhiko Igarashi (2)
    Kazuhiro Haginoya (4)
    Shigeo Kure (1)

    1. Department of Pediatrics, Tohoku University School of Medicine, 2-1 Seiryomachi, Aobaku, Sendai, 980-8574, Japan
    2. Department of Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aobaku, Sendai, 980-8575, Japan
    3. Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryomachi, Aobaku, Sendai, 980-8573, Japan
    4. Department of Pediatric Neurology, Takuto Rehabilitation Center for Children, 20 Shishiotoaza, Yumoto, Akiumachi, Taihakuku, Sendai, 982-0241, Japan
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Human Genetics
    Molecular Medicine
    Internal Medicine
    Metabolic Diseases
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1203
文摘
T2 hyperintensity of brain white matter lesions detected by magnetic resonance imaging (MRI) are characteristic of a heterogeneous group of diseases. Persistent T2 high intensity in combination with T1 iso- or high intensity of white matter in infants indicates a lack of normal myelination, that is, hypomyelination. However, the precise diagnosis of hypomyelinating leukodystrophy based solely on MRI findings can be difficult, especially in the early stage of the disease. We studied 26 patients who were diagnosed with hypomyelinating leukodystrophy according to MRI findings and clinical features to uncover their genetic etiology through chromosomal analyses, targeted gene analyses, and an array comparative genomic hybridization (aCGH) assay. Then, for the 17 patients with unexplained hypomyelination by traditional analyses, whole-exome sequencing (WES) was performed. The presumptive diagnoses were confirmed in 58 % of the enrolled patients (15/26) and involved 9 different genetic backgrounds. The most frequent backgrounds were 18q deletion syndrome and Pelizaeus–Merzbacher disease, with an incidence of 12 % (3/26) for both. The diagnostic rate of chromosomal analyses, targeted gene analyses, and aCGH was 31 % (8/26), and one patient was clinically diagnosed with Cockayne syndrome. Using WES, the following causative genes of hypomyelination were identified in six individuals (35 %, 6/17): TUBB4A, POLR3B, KCNT1, and MCOLN1, and some of those genes were pathogenic for not only hypomyelination but also dysmyelination or delayed myelination. Our findings suggested heterogeneous genetic backgrounds in patients with persistent white matter lesions. These data also indicate that WES may be a rapid and useful tool for identifying the underlying genetic causes of undiagnosed leukodystrophies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700