Evidence for the presence of key chlorophyll-biosynthesis-related proteins in the genus Rubrobacter (Phylum Actinobacteria) and its implications for the evolution and origin of photosynthesis
详细信息    查看全文
  • 作者:Radhey S. Gupta ; Bijendra Khadka
  • 关键词:Origin of photosynthesis ; Chlorophyll ; bacteriochlorophyll (Bchl) biosynthesis ; Photosynthetic phyla of bacteria ; Genus Rubrobacter (phylum Actinobacteria) ; BchL ; B ; N homologs ; ParA ; MinD proteins
  • 刊名:Photosynthesis Research
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:127
  • 期:2
  • 页码:201-218
  • 全文大小:1,977 KB
  • 参考文献:Albuquerque L, Johnson MM, Schumann P, Rainey FA, da Costa MS (2014) Description of two new thermophilic species of the genus Rubrobacter, Rubrobacter calidifluminis sp. nov. and Rubrobacter naiadicus sp. nov., and emended description of the genus Rubrobacter and the species Rubrobacter bracarensis. Syst Appl Microbiol 37:235–243PubMed CrossRef
    Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein databases search programs. Nucleic Acids Res 25:3389–3402PubMed PubMedCentral CrossRef
    Beale SI (1999) Enzyme of chlorophyll biosynthesis. Photosynth Res 60:43–73CrossRef
    Benkert P, Tosatto SC, Schomburg D (2008) QMEAN: a comprehensive scoring function for model quality assessment. Proteins 71:261–277PubMed CrossRef
    Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33:91–111CrossRef
    Blankenship RE (2010) Early evolution of photosynthesis. Plant Physiol 154:434–438PubMed PubMedCentral CrossRef
    Blankenship RE, Hartman H (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 23:94–97PubMed CrossRef
    Boyd ES, Peters JW (2013) New insights into the evolutionary history of biological nitrogen fixation. Front Microbiol 4:201PubMed PubMedCentral
    Brocker MJ, Schomburg S, Heinz DW, Jahn D, Schubert WD, Moser J (2010) Crystal structure of the nitrogenase-like dark operative protochlorophyllide oxidoreductase catalytic complex (ChlN/ChlB)2. J Biol Chem 285:27336–27345PubMed PubMedCentral CrossRef
    Bryant DA, Costas AM, Maresca JA et al (2007) Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic Acidobacterium. Science 317:523–526PubMed CrossRef
    Bryant DA, Frigaard NU (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 14:488–496PubMed CrossRef
    Burke DH, Hearst JE, Sidow A (1993) Early evolution of photosynthesis: clues from nitrogenase and chlrophyll iron proteins. Proc Natl Acad Sci USA 90:7134–7138PubMed PubMedCentral CrossRef
    Carreto L, Moore E, Nobre MF et al (1996) Rubrobacter xylanophilus sp. nov., a new thermophilic species isolated from a thermally polluted effluent. Int J Syst Bacteriol 46:460–465CrossRef
    Chen MY, Wu SH, Lin GH et al (2004) Rubrobacter taiwanensis sp. nov., a novel thermophilic, radiation-resistant species isolated from hot springs. Int J Syst Evol Microbiol 54:1849–1855PubMed CrossRef
    Chew AG, Bryant DA (2007) Chlorophyll biosynthesis in bacteria: the origins of structural and functional diversity. Annu Rev Microbiol 61:113–129PubMed CrossRef
    Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519PubMed PubMedCentral CrossRef
    Cordell SC, Lowe J (2001) Crystal structure of the bacterial cell division regulator MinD. FEBS Lett 492:160–165PubMed CrossRef
    Dismukes GC, Klimov VV, Baranov SV, Kozlov YN, DasGupta J, Tyryshkin A (2001) The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc Natl Acad Sci USA 98:2170–2175PubMed PubMedCentral CrossRef
    Egas C, Barroso C, Froufe HJ, Pacheco J, Albuquerque L, da Costa MS (2014) Complete genome sequence of the radiation–resistant bacterium Rubrobacter radiotolerans RSPS-4. Stand Genomic Sci 9:1062–1075PubMed PubMedCentral CrossRef
    Eisenberg D, Luthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404PubMed CrossRef
    Fiser A, Sali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491PubMed CrossRef
    Gao B, Gupta RS (2012) Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 76:66–112PubMed PubMedCentral CrossRef
    Gest H, Favinger J (1983) Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a “new” form of bacteriochlorophyll. Arch Microbiol 136:11–16CrossRef
    Goodfellow M, Kampfer P, Busse HJ, Trujillo ME, Suzuki K, Ludwig W, Whitman W (2011) The Actinobacteria. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology. Springer, New York
    Granick S (1965) Evolution of heme and chlorophyll. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 67–88
    Gupta RS (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62:1435–1491PubMed PubMedCentral
    Gupta RS (2003) Evolutionary relationships among photosynthetic bacteria. Photosynth Res 76:173–183PubMed CrossRef
    Gupta RS (2009) Protein signatures (molecular synapomorphies) that are distinctive characteristics of the major cyanobacterial clades. Int J Syst Evol Microbiol 59:2510–2526PubMed CrossRef
    Gupta RS (2010) Molecular signatures for the main phyla of photosynthetic bacteria and their subgroups. Photosynth Res 104:357–372PubMed CrossRef
    Gupta RS (2012) Origin and spread of photosynthesis based upon conserved sequence features in key bacteriochlorophyll biosynthesis proteins. Mol Biol Evol 29:3397–3412PubMed CrossRef
    Gupta RS (2013) Moelcular markers for photosynthetic bacteria and insights into the origin and spread of photosynthesis. Adv Bot Res 66:37–66CrossRef
    Gupta RS (2014) Identification of conserved indels that are useful for classification and evolutionary studies. In: Goodfellow M, Sutcliffe IC, Chun J (eds) Bacterial taxonomy, methods in microbiology, vol 41. Elsevier, London, pp 153–182
    Hester CM, Lutkenhaus J (2007) Soj (ParA) DNA binding is mediated by conserved arginines and is essential for plasmid segregation. Proc Natl Acad Sci USA 104:20326–20331PubMed PubMedCentral CrossRef
    Hohmann-Marriott MF, Blankenship RE (2011) Evolution of photosynthesis. Annu Rev Plant Biol 62:515–548PubMed CrossRef
    Howard-Azzeh M, Shamseer L, Schellhorn HE, Gupta RS (2014) Phylogenetic analysis and molecular signatures defining a monophyletic clade of heterocystous cyanobacteria and identifying its closest relatives. Photosynth Res 122:171–185PubMed CrossRef
    Huang YJ, Mao B, Aramini JM, Montelione GT (2014) Assessment of template-based protein structure predictions in CASP10. Proteins 82(Suppl 2):43–56PubMed PubMedCentral CrossRef
    Igarashi N, Harada J, Nagashima S, Matsuura K, Shimada K, Nagashima KVP (2001) Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. J Mol Evol 52:333–341PubMed
    Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal x. Trends Biochem Sci 23:403–405PubMed CrossRef
    Jurado V, Miller AZ, Alias-Villegas C, Laiz L, Saiz-Jimenez C (2012) Rubrobacter bracarensis sp. nov., a novel member of the genus Rubrobacter isolated from a biodeteriorated monument. Syst Appl Microbiol 35:306–309PubMed CrossRef
    Kampfer P, Glaeser SP, Busse HJ, Abdelmohsen UR, Hentschel U (2014) Rubrobacter aplysinae sp. nov., isolated from the marine sponge Aplysina aerophoba. Int J Syst Evol Microbiol 64:705–709PubMed CrossRef
    Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858PubMed CrossRef
    Leonard TA, Butler PJ, Lowe J (2005) Bacterial chromosome segregation: structure and DNA binding of the Soj dimer—a conserved biological switch. EMBO J 24:270–282PubMed PubMedCentral CrossRef
    Lovell SC, Davis IW, Arendall WB III et al (2003) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50:437–450PubMed CrossRef
    Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85PubMed CrossRef
    Lutkenhaus J (2012) The ParA/MinD family puts things in their place. Trends Microbiol 20:411–418PubMed PubMedCentral CrossRef
    Margulis L (1993) Symbiosis in cell evolution. W.H. Freeman and Company, New York
    Mariani V, Kiefer F, Schmidt T, Haas J, Schwede T (2011) Assessment of template based protein structure predictions in CASP9. Proteins 79(Suppl 10):37–58PubMed CrossRef
    Meng EC, Pettersen EF, Couch GS, Huang CC, Ferrin TE (2006) Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinform 7:339CrossRef
    Morden CW, Delwiche CF, Kuhsel M, Palmer JD (1992) Gene phylogenies and the endosymbiotic origin of plastids. Biosystems 28:75–90PubMed CrossRef
    Mulkidjanian AY, Koonin EV, Makarova KS et al (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci USA 103:13126–13131PubMed PubMedCentral CrossRef
    Muraki N, Nomata J, Ebata K et al (2010) X-ray crystal structure of the light-independent protochlorophyllide reductase. Nature 465:110–114PubMed CrossRef
    Olson JM, Blankenship RE (2004) Thinking about the evolution of photosynthesis. Photosynth Res 80:373–386PubMed CrossRef
    Olson JM, Pierson BK (1987) Evolution of reaction centers in photosynthetic prokaryotes. Int Rev Cytol 108:209–248PubMed CrossRef
    Raymond J (2008) Coloring in the tree of life. Trends Microbiol 16:41–43PubMed CrossRef
    Raymond J, Siefert JL, Staples CR, Blankenship RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554PubMed CrossRef
    Raymond J, Zhaxybayeva O, Gogarten JP, Blankenship RE (2003) Evolution of photosynthetic prokaryotes: a maximum-likelihood mapping approach. Philos Trans R Soc Lond [Biol] 358:223–230CrossRef
    Raymond J, Zhaxybayeva O, Gogarten JP, Gerdes SY, Blankenship RE (2002) Whole-genome analysis of photosynthetic prokaryotes. Science 298:1616–1620PubMed CrossRef
    Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277PubMed CrossRef
    Rose PW, Prlic A, Bi C et al (2015) The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. Nucleic Acids Res 43:D345–D356PubMed PubMedCentral CrossRef
    Sakai N, Yao M, Itou H et al (2001) The three-dimensional structure of septum site-determining protein MinD from Pyrococcus horikoshii OT3 in complex with Mg-ADP. Structure 9:817–826PubMed CrossRef
    Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815PubMed CrossRef
    Sarma R, Barney BM, Hamilton TL, Jones A, Seefeldt LC, Peters JW (2008) Crystal structure of the L protein of Rhodobacter sphaeroides light-independent protochlorophyllide reductase with MgADP bound: a homologue of the nitrogenase Fe protein. Biochemistry 47:13004–13015PubMed CrossRef
    Sawana A, Adeolu M, Gupta RS (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5:429PubMed PubMedCentral CrossRef
    Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15:2507–2524PubMed PubMedCentral CrossRef
    Shi T, Falkowski PG (2008) Genome evolution in cyanobacteria: the stable core and the variable shell. Proc Natl Acad Sci USA 105:2510–2515PubMed PubMedCentral CrossRef
    Swingley WD, Blankenship RE, Raymond J (2008) Integrating Markov clustering and molecular phylogenetics to reconstruct the cyanobacterial species tree from conserved protein families. Mol Biol Evol 25:643–654PubMed CrossRef
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMed PubMedCentral CrossRef
    Tank M, Bryant DA (2015) Chloracidobacterium thermophilum gen. nov., sp. nov.: an anoxygenic microaerophilic chlorophotoheterotrophic acidobacterium. Int J Syst Evol Microbiol 65:1426–1430PubMed CrossRef
    Tank M, Bryant DA (2015) Nutrient requirements and growth physiology of the photoheterotrophic Acidobacterium, Chloracidobacterium thermophilum. Front Microbiol 6:226PubMed PubMedCentral CrossRef
    Thakur S, Bothra AK, Sen A (2013) Functional divergence outlines the evolution of novel protein function in NifH/BchL protein family. J Biosci 38:733–740PubMed CrossRef
    Vermaas WFJ (1994) Evolution of heliobacteria: implications for photosynthetic reaction center complexes. Photosynth Res 41:285–294CrossRef
    Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699PubMed CrossRef
    Xiong J, Bauer CE (2002) Complex evolution of photosynthesis. Annu Rev Plant Biol 53:503–521PubMed CrossRef
    Xiong J, Fischer WM, Inoue K, Nakahara M, Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289:1724–1730PubMed CrossRef
    Xiong J, Inoue K, Bauer CE (1998) Tracking molecular evolution of photosynthesis by characterizaton of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc Natl Acad Sci USA 95:14851–14856PubMed PubMedCentral CrossRef
    Xu D, Zhang Y (2011) Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J 101:2525–2534PubMed PubMedCentral CrossRef
    Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res
    Yarza P, Richter M, Peplies J et al (2008) The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250PubMed CrossRef
    Zeng Y, Feng F, Medova H, Dean J, Koblizek M (2014) Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc Natl Acad Sci USA 111:7795–7800PubMed PubMedCentral CrossRef
    Zeng Y, Selyanin V, Lukes M, et al (2015) Characterization of microaerophilic bacteriochlorophyll a—containing bacterium Gemmatimonas phototrophica sp. nov. Int J Syst Evol Microbiol
    Zhu K, Pincus DL, Zhao S, Friesner RA (2006) Long loop prediction using the protein local optimization program. Proteins 65:438–452PubMed CrossRef
    Zsebo KM, Hearst JE (1984) Genetic-physical mapping of a photosynthetic gene cluster from R. c apsulata. Cell 37:937–947PubMed CrossRef
  • 作者单位:Radhey S. Gupta (1)
    Bijendra Khadka (1)

    1. Department of Biochemistry, McMaster University, Hamilton, ON, L8N 3Z5, Canada
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
  • 出版者:Springer Netherlands
  • ISSN:1573-5079
文摘
Homologs showing high degree of sequence similarity to the three subunits of the protochlorophyllide oxidoreductase enzyme complex (viz. BchL, BchN, and BchB), which carries out a central role in chlorophyll-bacteriochlorophyll (Bchl) biosynthesis, are uniquely found in photosynthetic organisms. The results of BLAST searches and homology modeling presented here show that proteins exhibiting a high degree of sequence and structural similarity to the BchB and BchN proteins are also present in organisms from the high G+C Gram-positive phylum of Actinobacteria, specifically in members of the genus Rubrobacter (R. x ylanophilus and R. r adiotolerans). The results presented exclude the possibility that the observed BLAST hits are for subunits of the nitrogenase complex or the chlorin reductase complex. The branching in phylogenetic trees and the sequence characteristics of the Rubrobacter BchB/BchN homologs indicate that these homologs are distinct from those found in other photosynthetic bacteria and that they may represent ancestral forms of the BchB/BchN proteins. Although a homolog showing high degree of sequence similarity to the BchL protein was not detected in Rubrobacter, another protein, belonging to the ParA/Soj/MinD family, present in these bacteria, exhibits high degree of structural similarity to the BchL. In addition to the BchB/BchN homologs, Rubrobacter species also contain homologs showing high degree of sequence similarity to different subunits of magnesium chelatase (BchD, BchH, and BchI) as well as proteins showing significant similarity to the BchP and BchG proteins. Interestingly, no homologs corresponding to the BchX, BchY, and BchZ proteins were detected in the Rubrobacter species. These results provide the first suggestive evidence that some form of photosynthesis either exists or was anciently present within the phylum Actinobacteria (high G+C Gram-positive) in members of the genus Rubrobacter. The significance of these results concerning the origin of the Bchl-based photosynthesis is also discussed. Keywords Origin of photosynthesis Chlorophyll-bacteriochlorophyll (Bchl) biosynthesis Photosynthetic phyla of bacteria Genus Rubrobacter (phylum Actinobacteria) BchL-B-N homologs ParA-MinD proteins

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700