The Dipeptidyl Peptidases 4, 8, and 9 in Mouse Monocytes and Macrophages: DPP8/9 Inhibition Attenuates M1 Macrophage Activation in Mice
详细信息    查看全文
  • 作者:Yannick Waumans ; Gwendolyn Vliegen ; Lynn Maes ; Miche Rombouts ; Ken Declerck…
  • 关键词:dipeptidyl peptidase ; DPP4 ; monocytes ; macrophages ; atherosclerosis
  • 刊名:Inflammation
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:39
  • 期:1
  • 页码:413-424
  • 全文大小:884 KB
  • 参考文献:1.WHO. 2014. The top 10 causes of death. World Health Organization.
    2.Silvestre-Roig, C., M.P. de Winther, C. Weber, M.J. Daemen, E. Lutgens, and O. Soehnlein. 2014. Atherosclerotic plaque destabilization: mechanisms, models, and therapeutic strategies. Circulation Research 114: 214–226. doi:10.​1161/​CIRCRESAHA.​114.​302355 .CrossRef PubMed
    3.Stöger, J., M. Gijbels, and S. Van der Velden. 2012. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis 225: 461–468.CrossRef PubMed
    4.Van der Valk, F., D. Van Wijk, and E. Stroes. 2012. Novel anti-inflammatory strategies in atherosclerosis. Current Opinion in Lipidology 23: 532–539.CrossRef PubMed
    5.Drucker, D., and M. Nauck. 2006. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. The Lancet 368: 1696–1705. doi:10.​1016/​S0140-6736(06)69705-5 .CrossRef
    6.Deacon, C.F. 2011. Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes: a comparative review. Diabetes, Obesity & Metabolism 13: 7–18. doi:10.​1111/​j.​1463-1326.​2010.​01306.​x .CrossRef
    7.Kieffer, T.J., C.H. McIntosh, and R.A. Pederson. 1995. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136: 3585–3596. doi:10.​1210/​endo.​136.​8.​7628397 .PubMed
    8.Drucker, D.J., Q. Shi, A. Crivici, M. Sumner-Smith, W. Tavares, M. Hill, L. DeForest, S. Cooper, and P.L. Brubaker. 1997. Regulation of the biological activity of glucagon-like peptide 2 in vivo by dipeptidyl peptidase IV. Nature Biotechnology 15: 673–677. doi:10.​1038/​nbt0797-673 .CrossRef PubMed
    9.Ahmad, S., L. Wang, and P.E. Ward. 1992. Dipeptidyl(amino)peptidase IV and aminopeptidase M metabolize circulating substance P in vivo. The Journal of Pharmacology and Experimental Therapeutics 260: 1257–1261.PubMed
    10.Brandt, I., A.-M. Lambeir, J.-M. Ketelslegers, M. Vanderheyden, S. Scharpé, and I. De Meester. 2006. Dipeptidyl-peptidase IV converts intact B-type natriuretic peptide into its des-SerPro form. Clinical Chemistry 52: 82–87. doi:10.​1373/​clinchem.​2005.​057638 .CrossRef PubMed
    11.Busso, N., N. Wagtmann, C. Herling, V. Chobaz-Péclat, A. Bischof-Delaloye, A. So, and E. Grouzmann. 2005. Circulating CD26 is negatively associated with inflammation in human and experimental arthritis. The American Journal of Pathology 166: 433–442. doi:10.​1016/​S0002-9440(10)62266-3 .PubMedCentral CrossRef PubMed
    12.Broxmeyer, H.E., J. Hoggatt, H. O’Leary, C. Mantel, C. Brahmananda, S. Cooper, S. Messina-Graham, G. Hangoc, S. Farag, S. Rohrabaugh, X. Ou, J. Speth, L. Pelus, E. Srour, and T. Campbell. 2012. Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis. Nature Medicine 18: 1786–1796. doi:10.​1038/​nm.​2991.​Dipeptidylpeptid​ase .PubMedCentral CrossRef PubMed
    13.Marchetti, C., A. Di Carlo, F. Facchiano, C. Senatore, R. De Cristofaro, A. Luzi, M. Federici, M. Romani, M. Napolitano, M.C. Capogrossi, and A. Germani. 2012. High mobility group box 1 is a novel substrate of dipeptidyl peptidase-IV. Diabetologia 55: 236–244. doi:10.​1007/​s00125-011-2213-6 .CrossRef PubMed
    14.Forssmann, U., C. Stoetzer, M. Stephan, C. Kruschinski, T. Skripuletz, J. Schade, A. Schmiedl, R. Pabst, L. Wagner, T. Hoffmann, A. Kehlen, S.E. Escher, W.-G.W.-G. Forssmann, J. Elsner, S. von Hörsten, and S. von Horsten. 2008. Inhibition of CD26/dipeptidyl peptidase IV enhances CCL11/eotaxin-mediated recruitment of eosinophils in vivo. The Journal of Immunology 181: 1120–1127. doi:10.​4049/​jimmunol.​181.​2.​1120 .CrossRef PubMed
    15.Jost, M.M., J. Lamerz, H. Tammen, C. Menzel, I. De Meester, A.-M. Lambeir, K. Augustyns, S. Scharpé, H.D. Zucht, H. Rose, M. Jürgens, P. Schulz-Knappe, and P. Budde. 2009. In vivo profiling of DPP4 inhibitors reveals alterations in collagen metabolism and accumulation of an amyloid peptide in rat plasma. Biochemical Pharmacology 77: 228–237. doi:10.​1016/​j.​bcp.​2008.​09.​032 .CrossRef PubMed
    16.Morimoto, C., and S.F. Schlossman. 1998. The structure and function of CD26 in the T-cell immune response. Immunological Reviews 161: 55–70.CrossRef PubMed
    17.Van Goethem, S., V. Matheeussen, J. Joossens, A.-M. Lambeir, X. Chen, I. De Meester, A. Haemers, K. Augustyns, and P. Van der Veken. 2011. Structure-activity relationship studies on isoindoline inhibitors of dipeptidyl peptidases 8 and 9 (DPP8, DPP9): is DPP8-selectivity an attainable goal? Journal of Medicinal Chemistry American Chemical Society: 54: 5737–5746. doi:10.​1021/​jm200383j .CrossRef
    18.Yu, D.M.T., X.M. Wang, G.W. McCaughan, and M.D. Gorrell. 2006. Extraenzymatic functions of the dipeptidyl peptidase IV-related proteins DP8 and DP9 in cell adhesion, migration and apoptosis. The FEBS Journal 273: 2447–2460. doi:10.​1111/​j.​1742-4658.​2006.​05253.​x .CrossRef PubMed
    19.Yao, T.W., W.S. Kim, D.M.T. Yu, G. Sharbeen, G.W. McCaughan, K.Y. Choi, P. Xia, and M.D. Gorrell. 2011. A novel role of dipeptidyl peptidase 9 in epidermal growth factor signaling. Molecular Cancer Research 9. AACR: 948–59.
    20.Park, J., H.M. Knott, N.A. Nadvi, C.A. Collyer, X.M. Wang, W.B. Church, and M.D. Gorrell. 2008. Reversible inactivation of human dipeptidyl peptidases 8 and 9 by oxidation. The Open Enzyme Inhibition Journal 1: 52–60. doi:10.​2174/​1874940200801010​052 .CrossRef
    21.Dubois, V., C. Van Ginneken, H. De Cock, A.-M. Lambeir, P. Van der Veken, K. Augustyns, X. Chen, S. Scharpé, and I. De Meester. 2009. Enzyme activity and immunohistochemical localization of dipeptidyl peptidase 8 and 9 in male reproductive tissues. The Journal of Histochemistry and Cytochemistry : Official Journal of the Histochemistry Society 57: 531–541. doi:10.​1369/​jhc.​2009.​952739 .CrossRef
    22.Lu, C., J.U. Tilan, L. Everhart, M. Czarnecka, S.J. Soldin, D.R. Mendu, D. Jeha, J. Hanafy, C.K. Lee, J. Sun, E. Izycka-Swieszewska, J.A. Toretsky, and J. Kitlinska. 2011. Dipeptidyl peptidases as survival factors in Ewing sarcoma family of tumors: implications for tumor biology and therapy. The Journal of Biological Chemistry 286: 27494–27505. doi:10.​1074/​jbc.​M111.​224089 .PubMedCentral CrossRef PubMed
    23.Pilla, E., U. Möller, G. Sauer, F. Mattiroli, F. Melchior, and R. Geiss-Friedlander. 2012. A novel SUMO1-specific interacting motif in dipeptidyl peptidase 9 (DPP9) that is important for enzymatic regulation. The Journal of Biological Chemistry 287: 44320–44329. doi:10.​1074/​jbc.​M112.​397224 .PubMedCentral CrossRef PubMed
    24.Schade, J., M. Stephan, A. Schmiedl, L. Wagner, A.J. Niestroj, H.-U. Demuth, N. Frerker, C. Klemann, K.A. Raber, R. Pabst, and S. von Hörsten. 2008. Regulation of expression and function of dipeptidyl peptidase 4 (DP4), DP8/9, and DP10 in allergic responses of the lung in rats. The Journal of Histochemistry and Cytochemistry 56: 147–155. doi:10.​1369/​jhc.​7A7319.​2007 .PubMedCentral CrossRef PubMed
    25.Yazbeck, R., M.L. Sulda, G.S. Howarth, A. Bleich, K. Raber, S. von Hörsten, J.J. Holst, and C.A. Abbott. 2010. Dipeptidyl peptidase expression during experimental colitis in mice. Inflammatory Bowel Diseases 16: 1340–1351. doi:10.​1002/​ibd.​21241 .CrossRef PubMed
    26.Röhnert, P., W. Schmidt, P. Emmerlich, A. Goihl, S. Wrenger, U. Bank, K. Nordhoff, M. Täger, S. Ansorge, D. Reinhold, and F. Striggow. 2012. Dipeptidyl peptidase IV, aminopeptidase N and DPIV/APN-like proteases in cerebral ischemia. Journal of Neuroinflammation 9: 44–59. doi:10.​1186/​1742-2094-9-44 .PubMedCentral CrossRef PubMed
    27.Chowdhury, S., Y. Chen, T.-W. Yao, K. Ajami, X.M. Wang, Y. Popov, D. Schuppan, P. Bertolino, G.W. McCaughan, D.M. Yu, and M.D. Gorrell. 2013. Regulation of dipeptidyl peptidase 8 and 9 expression in activated lymphocytes and injured liver. World Journal of Gastroenterology 19: 2883–2893. doi:10.​3748/​wjg.​v19.​i19.​2883 .PubMedCentral PubMed
    28.Matheeussen, V., Y. Waumans, W. Martinet, S. Van Goethem, P. Van der Veken, S. Scharpé, K. Augustyns, G.R.Y. De Meyer, and I. De Meester. 2013. Dipeptidyl peptidases in atherosclerosis: expression and role in macrophage differentiation, activation and apoptosis. Basic Research in Cardiology 108: 350–364. doi:10.​1007/​s00395-013-0350-4 .CrossRef PubMed
    29.Matsubara, J., S. Sugiyama, K. Sugamura, T. Nakamura, Y. Fujiwara, E. Akiyama, H. Kurokawa, T. Nozaki, K. Ohba, M. Konishi, H. Maeda, Y. Izumiya, K. Kaikita, H. Sumida, H. Jinnouchi, K. Matsui, S. Kim-Mitsuyama, M. Takeya, and H. Ogawa. 2012. A dipeptidyl peptidase-4 inhibitor, des-fluoro-sitagliptin, improves endothelial function and reduces atherosclerotic lesion formation in apolipoprotein E-deficient mice. Journal of the American College of Cardiology 59: 265–276. doi:10.​1016/​j.​jacc.​2011.​07.​053 .CrossRef PubMed
    30.Scirica, B.M., D.L. Bhatt, E. Braunwald, P.G. Steg, J. Davidson, B. Hirshberg, P. Ohman, R. Frederich, S.D. Wiviott, E.B. Hoffman, M.A. Cavender, J.A. Udell, N.R. Desai, O. Mosenzon, D.K. McGuire, K.K. Ray, L.A. Leiter, and I. Raz. 2013. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. The New England Journal of Medicine 369: 1317–1326. doi:10.​1056/​NEJMoa1307684 .CrossRef PubMed
    31.Monami, M., I. Dicembrini, and E. Mannucci. 2014. Dipeptidyl peptidase-4 inhibitors and heart failure: a meta-analysis of randomized clinical trials. Nutrition, Metabolism, and Cardiovascular Diseases 24: 689–697. doi:10.​1016/​j.​numecd.​2014.​01.​017 .CrossRef PubMed
    32.Getz, G.S., and C.A. Reardon. 2012. Animal models of atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 32: 1104–1115. doi:10.​1161/​ATVBAHA.​111.​237693 .PubMedCentral CrossRef PubMed
    33.Francke, A., J. Herold, S. Weinert, R.H. Strasser, and R.C. Braun-Dullaeus. 2011. Generation of mature murine monocytes from heterogeneous bone marrow and description of their properties. The Journal of Histochemistry and Cytochemistry 59: 813–825. doi:10.​1369/​0022155411416007​ .PubMedCentral CrossRef PubMed
    34.Kim, D., L. Wang, M. Beconi, G.J. Eiermann, M.H. Fisher, H. He, G.J. Hickey, J.E. Kowalchick, B. Leiting, K. Lyons, F. Marsilio, M.E. McCann, R.A. Patel, A. Petrov, G. Scapin, S.B. Patel, R.S. Roy, J.K. Wu, M.J. Wyvratt, B.B. Zhang, L. Zhu, N.A. Thornberry, and A.E. Weber. 2005. (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Journal of Medicinal Chemistry 48: 141–151. doi:10.​1021/​jm0493156 .CrossRef PubMed
    35.Wu, J.-J., H.-K. Tang, T.-K. Yeh, C.-M. Chen, H.-S. Shy, Y.-R. Chu, C.-H. Chien, T.-Y. Tsai, Y.-C. Huang, Y.-L. Huang, C.-H. Huang, H.-Y. Tseng, W.-T. Jiaang, Y.-S. Chao, and X. Chen. 2009. Biochemistry, pharmacokinetics, and toxicology of a potent and selective DPP8/9 inhibitor. Biochemical Pharmacology 78: 203–210. doi:10.​1016/​j.​bcp.​2009.​03.​032 .CrossRef PubMed
    36.Matheeussen, V., A.-M. Lambeir, W. Jungraithmayr, N. Gomez, K. Mc Entee, P. Van der Veken, S. Scharpé, and I. De Meester. 2011. Method comparison of dipeptidyl peptidase IV activity assays and their application in biological samples containing reversible inhibitors. Clinica chimica acta; international journal of clinical chemistry 413: 456–62. doi:10.​1016/​j.​cca.​2011.​10.​031 Elsevier B.V..
    37.Bjelke, J.R., J. Christensen, P.F. Nielsen, S. Branner, A.B. Kanstrup, N. Wagtmann, and H.B. Rasmussen. 2006. Dipeptidyl peptidases 8 and 9: specificity and molecular characterization compared with dipeptidyl peptidase IV. The Biochemical Journal 396: 391–399. doi:10.​1042/​BJ20060079 .PubMedCentral CrossRef PubMed
    38.Bryan, N.S., and M.B. Grisham. 2008. Methods to detect nitric oxide and its metabolites in biological samples. Free Radical Biology and Medicine 43: 645–657.CrossRef
    39.Ta, N.N., C.A. Schuyler, Y. Li, M.F. Lopes-Virella, and Y. Huang. 2011. DPP-4 (CD26) inhibitor alogliptin inhibits atherosclerosis in diabetic apolipoprotein E-deficient mice. Journal of Cardiovascular Pharmacology 58: 157–166. doi:10.​1097/​FJC.​0b013e31821e5626​ .PubMedCentral CrossRef PubMed
    40.Shah, Z., T. Kampfrath, J.A. Deiuliis, J. Zhong, C. Pineda, Z. Ying, X. Xu, B. Lu, S. Moffatt-Bruce, R. Durairaj, Q. Sun, G. Mihai, A. Maiseyeu, and S. Rajagopalan. 2011. Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation 124: 2338–2349. doi:10.​1161/​CIRCULATIONAHA.​111.​041418 .PubMedCentral CrossRef PubMed
    41.Terasaki, M., M. Nagashima, T. Watanabe, K. Nohtomi, Y. Mori, A. Miyazaki, and T. Hirano. 2012. Effects of p KF275–055, a dipeptidyl peptidase-4 inhibitor, on the development of atherosclerotic lesions in apolipoprotein E-null mice. Metabolism 61: 974–977. doi:10.​1016/​j.​metabol.​2011.​11.​011 .CrossRef PubMed
    42.Terasaki, M., M. Nagashima, K. Nohtomi, K. Kohashi, M. Tomoyasu, K. Sinmura, Y. Nogi, Y. Katayama, K. Sato, F. Itoh, T. Watanabe, and T. Hirano. 2013. Preventive effect of dipeptidyl peptidase-4 inhibitor on atherosclerosis is mainly attributable to incretin’s actions in nondiabetic and diabetic apolipoprotein E-null mice. PLoS One 8, e70933. doi:10.​1371/​journal.​pone.​0070933 .PubMedCentral CrossRef PubMed
    43.Ervinna, N., T. Mita, E. Yasunari, K. Azuma, R. Tanaka, S. Fujimura, D. Sukmawati, T. Nomiyama, A. Kanazawa, R. Kawamori, Y. Fujitani, and H. Watada. 2013. Anagliptin, a DPP-4 inhibitor, suppresses proliferation of vascular smooth muscles and monocyte inflammatory reaction and attenuates atherosclerosis in male apo E-deficient mice. Endocrinology 154: 1260–1270. doi:10.​1210/​en.​2012-1855 .CrossRef PubMed
    44.Zhong, J., X. Rao, J. Deiuliis, Z. Braunstein, V. Narula, J. Hazey, D. Mikami, B. Needleman, A.R. Satoskar, and S. Rajagopalan. 2013. A potential role for dendritic cell/macrophage-expressing DPP4 in obesity-induced visceral inflammation. Diabetes 62: 149–157. doi:10.​2337/​db12-0230 .PubMedCentral CrossRef PubMed
    45.Barbieri, M., M.R. Rizzo, R. Marfella, V. Boccardi, A. Esposito, A. Pansini, and G. Paolisso. 2013. Decreased carotid atherosclerotic process by control of daily acute glucose fluctuations in diabetic patients treated by DPP-IV inhibitors. Atherosclerosis 227: 349–54. doi:10.​1016/​j.​atherosclerosis.​2012.​12.​018 Elsevier Ltd.
    46.Spagnuolo, P. A, R. Hurren, M. Gronda, N. MacLean, A. Datti, A. Basheer, F.-H. Lin, X. Wang, J. Wrana, and A D. Schimmer. 2013. Inhibition of intracellular dipeptidyl peptidases 8 and 9 enhances parthenolide’s anti-leukemic activity. Leukemia 27: 1236–44. doi:10.​1038/​leu.​2013.​9 Nature Publishing Group.
    47.Guzman, M.L., R.M. Rossi, S. Neelakantan, X. Li, C.A. Corbett, D.C. Hassane, M.W. Becker, J.M. Bennett, E. Sullivan, J.L. Lachowicz, A. Vaughan, C.J. Sweeney, W. Matthews, M. Carroll, J.L. Liesveld, P.A. Crooks, and C.T. Jordan. 2007. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 110: 4427–4435. doi:10.​1182/​blood-2007-05-090621 .PubMedCentral CrossRef PubMed
    48.Guzman, M.L., R.M. Rossi, L. Karnischky, X. Li, D.R. Peterson, D.S. Howard, and C.T. Jordan. 2005. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 105: 4163–4169. doi:10.​1182/​blood-2004-10-4135 .PubMedCentral CrossRef PubMed
    49.Zunino, S.J., J.M. Ducore, and D.H. Storms. 2007. Parthenolide induces significant apoptosis and production of reactive oxygen species in high-risk pre-B leukemia cells. Cancer Letters 254: 119–127. doi:10.​1016/​j.​canlet.​2007.​03.​002 .CrossRef PubMed
    50.Carlisi, D., A. D’Anneo, L. Angileri, M. Lauricella, S. Emanuele, A. Santulli, R. Vento, and G. Tesoriere. 2011. Parthenolide sensitizes hepatocellular carcinoma cells to TRAIL by inducing the expression of death receptors through inhibition of STAT3 activation. Journal of Cellular Physiology 226: 1632–1641. doi:10.​1002/​jcp.​22494 .CrossRef PubMed
    51.Gopal, Y.N.V., E. Chanchorn, and M.W. Van Dyke. 2009. Parthenolide promotes the ubiquitination of MDM2 and activates p53 cellular functions. Molecular Cancer Therapeutics 8: 552–562. doi:10.​1158/​1535-7163.​MCT-08-0661 .CrossRef PubMed
    52.Brokopp, C.E., R. Schoenauer, P. Richards, S. Bauer, C. Lohmann, M.Y. Emmert, B. Weber, S. Winnik, E. Aikawa, K. Graves, M. Genoni, P. Vogt, T.F. Lüscher, C. Renner, S.P. Hoerstrup, and C.M. Matter. 2011. Fibroblast activation protein is induced by inflammation and degrades type I collagen in thin-cap fibroatheromata. European Heart Journal 32: 2713–2722. doi:10.​1093/​eurheartj/​ehq519 .PubMedCentral CrossRef PubMed
    53.Waumans, Y., L. Baerts, K. Kehoe, A.-M. Lambeir, and I. De Meester. 2015. The dipeptidyl peptidase family, prolyl oligopeptidase, and prolyl carboxypeptidase in the immune system and inflammatory disease, including atherosclerosis. Frontiers in Immunology 6. doi:10.​3389/​fimmu.​2015.​00387 Frontiers.
  • 作者单位:Yannick Waumans (1)
    Gwendolyn Vliegen (1)
    Lynn Maes (1)
    Miche Rombouts (2)
    Ken Declerck (3)
    Pieter Van Der Veken (4)
    Wim Vanden Berghe (3)
    Guido R. Y. De Meyer (2)
    Dorien Schrijvers (2)
    Ingrid De Meester (1)

    1. Laboratory of Medical Biochemistry, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
    2. Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
    3. Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), University of Antwerp, Antwerp, Belgium
    4. Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Rheumatology
    Internal Medicine
    Pharmacology and Toxicology
    Pathology
  • 出版者:Springer Netherlands
  • ISSN:1573-2576
文摘
Atherosclerosis remains the leading cause of death in Western countries. Dipeptidyl peptidase (DPP) 4 has emerged as a novel target for the prevention and treatment of atherosclerosis. Family members DPP8 and 9 are abundantly present in macrophage-rich regions of atherosclerotic plaques, and DPP9 inhibition attenuates activation of human M1 macrophages in vitro. Studying this family in a mouse model for atherosclerosis would greatly advance our knowledge regarding their potential as therapeutic targets. We found that DPP4 is downregulated during mouse monocyte-to-macrophage differentiation. DPP8 and 9 expression seems relatively low in mouse monocytes and macrophages. Viability of primary mouse macrophages is unaffected by DPP4 or DPP8/9 inhibition. Importantly, DPP8/9 inhibition attenuates macrophage activation as IL-6 secretion is significantly decreased. Mouse macrophages respond similarly to DPP inhibition, compared to human macrophages. This shows that the mouse could become a valid model species for the study of DPPs as therapeutic targets in atherosclerosis. KEY WORDS dipeptidyl peptidase DPP4 monocytes macrophages atherosclerosis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700