Selenium Supplementation of Amaranth Sprouts Influences Betacyanin Content and Improves Anti-Inflammatory Properties via NFκB in Murine RAW 264.7 Macrophages
详细信息    查看全文
  • 作者:Malgorzata Tyszka-Czochara ; Pawel Pasko…
  • 关键词:Selenium ; enriched amaranth sprouts ; Betacyanin ; Murine macrophage cell line (RAW 264.7) ; NFκB translocation ; Interleukin 6
  • 刊名:Biological Trace Element Research
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:169
  • 期:2
  • 页码:320-330
  • 全文大小:473 KB
  • 参考文献:1.Hole AS, Grimmer S, Jensen MR, Sahlstrøm S (2012) Synergistic and suppressive effects of dietary phenolic acids and other phytochemicals from cereal extracts on nuclear factor kappa B activity. Food Chem 133(3):969–977CrossRef
    2.Tan AC, Konczak I, Ramzan I, Zabaras D, Sze DMY (2011) Potential antioxidant, antiinflammatory, and proapoptotic anticancer activities of Kakadu plum and Illawarra plum polyphenolic fractions. Nutr Cancer 63(7):1074–1084PubMed CrossRef
    3.Kim DK, Jeong SC, Gorinstein S, Chon SU (2012) Total polyphenols, antioxidant and antiproliferative activities of different extracts in mungbean seeds and sprouts. Plant Foods Hum Nutr 67(1):71–75PubMed CrossRef
    4.Pasko P, Bukowska-Strakova K, Gdula-Argasinska J, Tyszka-Czochara M (2013) Rutabaga (Brassica napus L. var. napobrassica) Seeds, Roots, and Sprouts: A Novel Kind of Food with Antioxidant Properties and Proapoptotic Potential in Hep G2 Hepatoma Cell Line. J Med Food 16(8):749–759PubMed CrossRef
    5.Pasko P, Sulkowska-Ziaja K, Muszynska B, Zagrodzki P (2014) Serotonin, melatonin, and certain indole derivatives profiles in rutabaga and kohlrabi seeds, sprouts, bulbs, and roots. LWT-Food Sci Technol 59(2):740–745CrossRef
    6.Pasko P, Gdula - Argasinska J, Podporska-Carroll J, Quilty B, Wietecha - Posluszny R, Tyszka - Czochara M, Zagrodzki P (2014). Influence of selenium supplementation on fatty acids profile and biological activity of four edible amaranth sprouts as new kind of functional food. J Food Sci Technol (in press) 10.​1007/​s13197-014-1602-5
    7.Montoya-Rodríguez A, Mejía EG, Dia VP, Reyes-Moreno C, Milán-Carrillo J (2014) Extrusion improved the anti-inflammatory effect of amaranth (Amaranthus hypochondriacus) hydrolysates in LPS-induced human THP-1 macrophage-like and mouse RAW 264.7 macrophages by preventing activation of NF-κB signaling. Mol Nutr Food Res 58(5):1028–1041PubMed CrossRef
    8.Perales-Sánchez JX, Reyes-Moreno C, Gómez-Favela MA, Milán-Carrillo J, Cuevas-Rodríguez EO, Valdez-Ortiz A, Gutiérrez-Dorado R (2014) Increasing the antioxidant activity, total phenolic and flavonoid contents by optimizing the germination conditions of amaranth seeds. Plant Foods Hum Nutr 69:196–202PubMed CrossRef
    9.Cai YZ, Sun M, Corke H (2005) Characterization and application of betalain pigments from plants of the Amaranthaceae. Trends Food Sci Tech 16(9):370–376CrossRef
    10.Strack D, Vogt T, Schliemann W (2003) Recent advances in betalain research. Phytochemistry 62(3):247–269PubMed CrossRef
    11.Delgado-Vargas F, Jiménez AR, Paredes-López O (2000) Natural pigments: carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Cr Rev Food Sci 40(3):0173–0289CrossRef
    12.Alvarez-Jubete L, Wijngaard H, Arendt EK, Gallagher E (2010) Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem 119(2):770–778CrossRef
    13.Chlopicka J, Pasko P, Gorinstein S, Jedryas A, Zagrodzki P (2012) Total phenolic and total flavonoid content, antioxidant activity and sensory evaluation of pseudocereal breads. LWT-Food Sci Technol 46(2):548–555CrossRef
    14.Paśko P, Bartoń H, Zagrodzki P, Chłopicka J, Iżewska A, Gawlik M, Gawlik M, Gorinstein S (2011) Effect of amaranth seeds in diet on oxidative status in plasma and selected tissues of high fructose-fed rats. Food Chem 126(1):85–90CrossRef
    15.Paśko P, Bartoń H, Zagrodzki P, Gorinstein S (2011) Effect of amaranth seeds (Amaranthus cruentus) in the diet on some biochemical parameters and essential trace elements in blood of high fructose-fed rats. Nat Prod Res 25(8):844–849PubMed CrossRef
    16.Reilly C (1998) Selenium: a new entrant into the functional food arena. Trends Food Sci Tech 9(3):114–118CrossRef
    17.White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182(1):49–84PubMed CrossRef
    18.Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Phys 51(1):401–432CrossRef
    19.Reid ME, Stratton MS, Lillico AJ, Fakih M, Natarajan R, Clark LC, Marshall JR (2004) A report of high-dose selenium supplementation: response and toxicities. J Trace Elem Med Biol 18(1):69–74PubMed CrossRef
    20.Yang GQ, Wang SZ, Zhou RH, Sun SZ (1983) Endemic selenium intoxication of humans in China. Am J Clin Nutr 37(5):872–881PubMed
    21.Sheehan TMT (1998) The toxicology of selenium. Bull Intern Assoc Forensic Tox 28(3):16–20
    22.Brozmanová J, Mániková D, Vlčková V, Chovanec M (2010) Selenium: a double-edged sword for defense and offence in cancer. Arch Toxicol 84(12):919–938PubMed CrossRef
    23.Shalini S, Bansal MP (2007) Alterations in selenium status influences reproductive potential of male mice by modulation of transcription factor NFκB. Biometals 20(1):49–59PubMed CrossRef
    24.Karin M, Delhase M (2000) The IκB kinase (IKK) and NF-κB: key elements of proinflammatory signalling. In Seminars in immunology. Academic Press 12(1):85–98
    25.Libermann TA, Baltimore D (1990) Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 10(5):2327–2334PubMed PubMedCentral CrossRef
    26.Nascimento A C, Mota C, Coelho I, Gueifão S, Santos M, Matos AS, Gimenez A, Lobo M., Samman N., Castanheira I (2014) Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the North of Argentina: Proximates, minerals and trace elements. Food Chem 148: 420–426.PubMed CrossRef
    27.Shukla S, Bhargava A, Chatterjee A, Srivastava J, Singh N, Singh SP (2006) Mineral profile and variability in vegetable amaranth (Amaranthus tricolor). Plant Foods Hum Nutr 61(1):21–26CrossRef
    28.Kessell AE, Boulton J, Krebs GL, Quinn JC (2015) Acute renal failure associated with Amaranthus species ingestion by lambs. Aust Vet J 93(6):208–213PubMed CrossRef
    29.Carlson CL, Kaplan DI, Adriano DC (1989) Effects of selenium on germination and radicle elongation of selected agronomic species. Environ Exp Bot 29:493–498CrossRef
    30.Cao S, Liu T, Jiang Y, He S, Harrison DK, Joyce DC (2012) The effects of host defence elicitors on betacyanin accumulation in Amaranthus mangostanus seedlings. Food Chem 134(4):1715–1718PubMed CrossRef
    31.Cai Y, Corke H (1999) Amaranthus betacyanin pigments applied in model food systems. J Food Sci 64(5):869–873CrossRef
    32.Tyszka-Czochara M, Paśko P, Reczyński W, Szlósarczyk M, Bystrowska B, Opoka W (2014) Zinc and propolis reduces cytotoxicity and proliferation in skin fibroblast cell culture: total polyphenol content and antioxidant capacity of propolis. Biol Trace Elem Res 160(1):123–131PubMed PubMedCentral CrossRef
    33.Furdal S (1989) Statistical modelling in empirical research. The Institute of Sport, Warsaw[in Polish]
    34.Lintschinger J, Fuchs N, Moser J, Kuehnelt D, Goessler W (2000) Selenium-enriched sprouts. A raw material for fortified cereal-based diets. J Agric Food Chem 48:5362–5368PubMed CrossRef
    35.Chinrasri O, Chantiratikul P, Thosakham W, Atiwetin P, Chumpawadee S, Saenthaweesuk S, Chantiratikul A (2009) Effect of selenium-enriched bean sprout and other selenium sources on productivity and selenium concentration in eggs of laying hens. Asian-Aust J Anim Sci 12:1661–1666CrossRef
    36.Sugihara S, Kondo M, Chihara Y, Yuji M, Hattori H, Yoshida M (2004) Preparation of selenium-enriched sprouts and identification of their selenium species by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Biosci Biotechnol Biochem 68(1):193–199PubMed CrossRef
    37.Yoshida M, Okada T, Namikawa Y, Matsuzaki Y, Nishiyama T, Fukunaga K (2007) Evaluation of nutritional availability and anti-tumor activity of selenium contained in selenium-enriched Kaiware radish sprouts. Biosci Biotechnol Biochem 71(9):2198–2205PubMed CrossRef
    38.Kim YS, Milner J (2001) Molecular targets for selenium in cancer prevention. Nutr Cancer 40(1):50–54PubMed CrossRef
    39.Ghosh S, Karin M (2002) Missing pieces in the NF-κB puzzle. Cell 109(2):81–96CrossRef
    40.Calixto JB, Otuki MF, Santos ARS (2003) Anti-inflammatory compounds of plant origin. Part I. Action on arachidonic acid pathway, nitric oxide and nuclear factor κ B (NF-κB). Planta Med 69(11):973–983PubMed CrossRef
    41.Siomek A (2012) NF-κB signaling pathway and free radical impact. Acta Biochim Pol 59(3):323–331PubMed
    42.Kretz-Remy C, Mehlen P, Mirault ME, Arrigo AP (1996) Inhibition of I kappa B-alpha phosphorylation and degradation and subsequent NF-kappa B activation by glutathione peroxidase overexpression. J Cell Biol 133(5):1083–1093PubMed CrossRef
  • 作者单位:Malgorzata Tyszka-Czochara (1)
    Pawel Pasko (2) (3)
    Pawel Zagrodzki (2) (4)
    Ewelina Gajdzik (2)
    Renata Wietecha-Posluszny (5)
    Shela Gorinstein (6)

    1. Department of Radioligands, Medical College, Jagiellonian University, Krakow, Poland
    2. Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Medyczna 9, 30-688, Krakow, Poland
    3. Faculty of Health and Medical Science, Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
    4. Department of Nuclear Physical Chemistry, Institute of Nuclear Physics, Krakow, Poland
    5. Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
    6. The Institute for Drug Research, School of Pharmacy, The Hebrew University, Hadassah Medical School, Jerusalem, Israel
  • 刊物主题:Biochemistry, general; Biotechnology; Nutrition; Oncology;
  • 出版者:Springer US
  • ISSN:1559-0720
文摘
Sprouts contain potent compounds which while influencing crucial transduction pathways in cell reveal anti-inflammatory and anticancer activities. In this study, we report the biological activity for seeds and colourful sprouts of four types of edible amaranth, as amaranth has recently attracted interest due to its appreciable nutritional value. MTT assay conducted for the amaranth seeds and sprouts did not show any adverse effect on the viability of murine RAW 264.7 cells. As amaranth accumulates selenium, the sprouts were supplemented with this trace element (10 mg/L; 15 mg/L Se as sodium selenite) while growing. Selenium concentration in sprouts was observed to be significantly correlated with betacyanins content of the tested species. The amounts of Se and betacyanins in sprouts varied for various Amaranth species. In the present study, Amaranthus cruentus sprouts with the highest betacyanins (19.30 ± 0.57–28.85 ± 2.23 mg of amaranthin/100 g of fresh weight) and high total selenium (22.51 ± 1.57–1044.75 ± 73.08 μg/L in methanol extracts) content prevented NFκB translocation to the cell nucleus and subsequently exerted an anti-inflammatory effect by significant decreasing inflammatory interleukin 6 production (587.3 ± 34.2–710.0 ± 88.1 pg/mL) in the cell culture of activated RAW 264.7 macrophages (vs LPS control 1520 ± 114 pg/mL). Keywords Selenium-enriched amaranth sprouts Betacyanin Murine macrophage cell line (RAW 264.7) NFκB translocation Interleukin 6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700