Plasma-actuated Manipulation of Secondary Flow Towards Pressure Recovery Enhancement in a 3D Diffuser Modelled by an Eddy-resolving Second-moment Closure
详细信息    查看全文
  • 作者:I. Maden ; R. Maduta ; J. Kriegseis ; S. Jakirlic…
  • 关键词:Plasma ; actuated flow control ; Separating flow in a 3D diffuser ; Plasma ; induced force distribution model ; Scale ; adaptive URANS framework ; Near ; wall Reynolds stress turbulence model
  • 刊名:Flow, Turbulence and Combustion
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:95
  • 期:2-3
  • 页码:377-398
  • 全文大小:3,819 KB
  • 参考文献:1.Abe, K., Ohtsuka, T.: An investigation of LES and Hybrid LES/RANS models for predicting 3-D diffuser flow. Int. J. Heat Fluid Flow 31(5), 833-44 (2010)CrossRef
    2.Baba-Ahmadi, M., Tabor, G.: Inlet conditions for LES using mapping and feedback control. Comput. Fluids 38(6), 1299-311 (2009)MATH CrossRef
    3.Balcer, B.E., Franke, M.E., Rivir, R.B.: Effects of plasma induced velocity on boundary layer flow. paper No. AIAA 2006-875. 44th AIAA Aerospace Sciences Meeting and Exhibit, Nevada, USA (2006)
    4.Benard, N., Sujar-Garrido, P., Bayoda, K.D., Bonnet, J.P., Moreau, E.: Pulsed dielectric barrier discharge for manipulation of turbulent flow downstream a backward-facing-step. 52nd AIAA Aerospace Sciences Meeting, National Harbor, MD, USA, January 13-17, Paper No. AIAA-2014-1127
    5.Benard, N., Moreau, E.: Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Exp Fluids 55 (1846) (2014)
    6.Cattafesta, L.N., Sheplak, M.: Actuators for active flow control. Ann. Rev. Fluid Mech. 43, 247-72 (2011)CrossRef
    7.Cherry, E.M., Elkins, C.J., Eaton, J.K.: Geometric sensitivity of three-dimensional separated flows. Int. J. Heat Fluid Flow 29(3), 803-11 (2008)CrossRef
    8.Cherry, E.M., Elkins, C.J., Eaton, J.K.: Pressure measurements in a three-dimensional separated diffuser. Int. J. Heat Fluid Flow 30(1), 1- (2009)CrossRef
    9.Choi, K.-S., Jukes, T., Whalley, R.: Turbulent boundary-layer control with plasma actuators. Phil. Trans. R. Soc. A 369, 1443-458 (2011)CrossRef
    10.Corke, T.C., Post, M.L., Orlov, D.M.: Single dielectric barrier discharge plasma enhanced aerodynamics: physics, modeling and applications. Exper. Fluids 46, 1-6 (2009)CrossRef
    11.Corke, T.C., Enloe, C.L., Wilkinson, S.P.: Dielectric barrier discharge plasma actuators for flow control. Ann. Rev. Fluid Mech. 42(1), 505-29 (2010)CrossRef
    12.Duchmann, A., Grundmann, S., Tropea, C.: Delay of natural transition with Dielectric Barrier Discharges. Exper. Fluids 54(3), 1461 (2013)CrossRef
    13.Grundmann, S., Sayles, E., J.K. Eaton, J.K.: Sensitivity of an asymmetric 3D diffuser to plasma-actuator induced inlet condition perturbations. Exper. Fluids 50(1), 217-31 (2011)CrossRef
    14.Hoskinson, A.R., Hershkowitz, N., Ashpis, D.E.: Force measurements of single and double barrier DBD plasma actuators in quiescent air. J. Phys. D: Appl. Phys. 41(24), 245209 (2008)CrossRef
    15.Hultgren, L.S., Ashpis, D.E.: Demonstration of separation delay with glow-discharge plasma actuators. Paper No. AIAA 2003-1025, 41st Aerospace Sciences Meeting and Exhibit, Nevada, USA (2003)CrossRef
    16.Im, S., Do, H., Cappelli, M.A.: Dielectric barrier discharge control of a turbulent boundary layer in a supersonic flow. Appl. Phys. Lett. 97, 041503 (2010)CrossRef
    17.Jakirlic, S., Hanjalic, K.: A new approach to modelling near-wall turbulence energy and stress dissipation. J. Fluid Mech. 439, 139-66 (2002)
    18.Jakirlic, S., Kadavelil, G., Sirbubalo, E., von Terzi, D.A., Breuer, M., Borello, D.: Report on 14th ERCOFTAC SIG 15 workshop on refined turbulence modelling. ERCOFTAC Bullet. 85, 5-3 (2010a)
    19.Jakirlic, S., Kadavelil, G., Kornhaas, M., Sch?fer, M., Sternel, D.C., Tropea, C.: Numerical and physical aspects in LES and hybrid LES/RANS of turbulent flow separation in a 3-D diffuser. Int. J. Heat Fluid Flow 31(5), 820-32 (2010b)CrossRef
    20.Jakirlic, S., Maduta, R., Ullrich, M.: Performance assessment of the Scale-adaptive Reynolds stress model by reference to tandem-cylinder configurations. 9th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements (ETMM9), Thessaloniki, Greece, June, 6- (2012)
    21.Jakirlic, S., Maduta, R.: Extending the bounds of ‘steady-RANS closures: toward an instability-sensitive Reynolds stress model. Int. J. Heat Fluid Flow 51, 175-94 (2015)CrossRef
    22.Jeyapaul, E.: Turbulent flow separation in three-dimensional asymmetric diffusers. PhD Thesis, Iowa State University, USA (2011)
    23.Jukes, T., Choi, K.-S., Johnson, G., Scott, S.: Turbulent Boundary-Layer Control for Drag Reduction Using Surface Plasma paper No. AIAA 2004-2216, 2nd AIAA Flow Control Conference, Oregon, USA (2004)
    24.Jukes, T.N., Choi, K.-S.: Dielectric-barrier-discharge vortex generators: characterisation and optimisation for flow separation control. Exper. Fluids 52(2), 329-45 (2012)CrossRef
    25.Kozlov, A.V., Thomas, F.O. Plasma Flow Control of Cylinders in a Tandem Configuration AIAA J. 49, 2183-193 (2011)
    26.Kriegseis, J., Schwarz, C., Tropea, C., Grundmann, S.: Velocity-information-based force-term estimation of dielectric-barrier discharge plasma actuators. J. Phys. D: Appl. Phys. 46(055202) (2013a)
    27.Kriegseis, J., Duchmann, A., Tropea, C., Grundmann, S.: On the classification of dielectric barrier discharge plasma actuators: A comprehensive performance evaluation study. J. Appl. Phys. 114(053301) (20
  • 作者单位:I. Maden (1)
    R. Maduta (2)
    J. Kriegseis (3)
    S. Jakirlic (1)
    S. Grundmann (4)
    C. Tropea (1)

    1. Department of Mechanical Engineering, Institute of Fluid Mechanics and Aerodynamics (SLA)/Center of Smart Interfaces (CSI), Technische Universit?t Darmstadt, Alarich-Weiss-Stra?e 10, 64287, Darmstadt, Germany
    2. Outotec GmbH, Ludwig-Erhard-Stra?e 21, 61440, Oberursel, Germany
    3. Karlsruhe Institute of Technology (KIT), Department of Mechanical Engineering, Institute of Fluid Mechanics (ISTM), Kaiserstr. 10, 76131, Karlsruhe, Germany
    4. Institute of Fluid Mechanics, Department of Mechanical Engineering, Rostock University, Albert-Einstein-Stra?e 2, 18051, Rostock, Germany
  • 刊物类别:Engineering
  • 刊物主题:Physics
    Mechanics
    Automotive Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-1987
文摘
A computational study is presented of the enhancement of pressure recovery in a three-dimensional diffuser by using plasma actuators, as experimentally investigated by Grundmann et al., Exper. Fluids 50, (1), 217-31 (2011). The flow configuration utilizes a streamwise-oriented arrangement of dielectric barrier discharge (DBD) plasma actuators mounted on the top wall of the inflow duct. Spanwise motion directed towards the duct corners was generated, modifying the inflow with locally intensified turbulence. The most advantageous enhancement was achieved using an actuator pulsed with 40 % duty cycle. For comparison an actuator operating continuously (100 % duty cycle) was also considered. The present computational study examines both cases, comparing them to the baseline configuration with no actuation. Simulations were performed within the scale-adaptive version of the Unsteady RANS (Reynolds-Averaged Navier Stokes) framework by using an eddy-resolving second-moment closure as the turbulence model. The plasma actuator was represented using a spatial body-force distribution based on PIV (Particle Image Velocimetry) measurements of the flow induced by a plasma actuator, Kriegseis et al., J. Phys. D: Appl. Phys. 48, 329401 (2015). The results obtained for both pressure-recovery enhancement and suppression correlate well with the experimental findings. Keywords Plasma-actuated flow control Separating flow in a 3D diffuser Plasma-induced force distribution model Scale-adaptive URANS framework Near-wall Reynolds stress turbulence model

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700