Comparative Proteome of Acetobacter pasteurianus Ab3 During the High Acidity Rice Vinegar Fermentation
详细信息    查看全文
  • 作者:Zhe Wang ; Ning Zang ; Jieyan Shi ; Wei Feng ; Ye Liu…
  • 关键词:Acetic acid resistance ; Vinegar fermentation ; Acetobacter pasteurianus ; Bidimensional gel electrophoresis ; MALDI ; TOF ; MS
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:177
  • 期:8
  • 页码:1573-1588
  • 全文大小:768 KB
  • 参考文献:1.Yamada, Y., & Yukphan, P. (2008). Genera and species in acetic acid bacteria. International Journal of Food Microbiology, 125, 15鈥?4.CrossRef
    2.Russell, J. B. and Diez-Gonzalez, F. (1997), In Advances in microbial physiology, vol. Volume 39, (Poole, R. K., ed.), Academic Press, pp. 205鈥?34.
    3.Qi, Z. L., Yang, H. L., Xia, X. L., Xin, Y., Zhang, L., Wang, W., & Yu, X. B. (2013). A protocol for optimization vinegar fermentation according to the ratio of oxygen consumption versus acid yield. Journal of Food Engineering, 116, 304鈥?09.CrossRef
    4.Awad, H. M., Diaz, R., Malek, R. A., Othman, N. Z., Aziz, R. A., & El Enshasy, H. A. (2012). Efficient production process for food grade acetic acid by Acetobacter aceti in shake flask and in bioreactor cultures. E-Journal of Chemistry, 9, 2275鈥?286.CrossRef
    5.Sakurai, K., Arai, H., Ishii, M., & Igarashi, Y. (2012). Changes in the gene expression profile of Acetobacter aceti during growth on ethanol. Journal of Bioscience and Bioengineering, 113, 343鈥?48.CrossRef
    6.Shafiei, R., Delvigne, F., Babanezhad, M., & Thonart, P. (2013). Evaluation of viability and growth of Acetobacter senegalensis under different stress conditions. International Journal of Food Microbiology, 163, 204鈥?13.CrossRef
    7.Fukaya, M., Takemura, H., Okumura, H., Kawamura, Y., Horinouchi, S., & Beppu, T. (1990). Cloning of genes responsible for acetic acid resistance in Acetobacter aceti. Journal of Bacteriology, 172, 2096鈥?104.
    8.Fukaya, M., Takemura, H., Tayama, K., Okumura, H., Kawamura, Y., Horinouchi, S., & Beppu, T. (1993). The aarC gene responsible for acetic acid assimilation confers acetic acid resistance on Acetobacter aceti. Journal of Fermentation and Bioengineering, 76, 270鈥?75.CrossRef
    9.Mullins, E. A., Francois, J. A., & Kappock, T. J. (2008). A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti. Journal of Bacteriology, 190, 4933鈥?940.CrossRef
    10.Mullins, E. A., & Kappock, T. J. (2012). Crystal structures of Acetobacter aceti succinyl-coenzyme A (CoA):acetate CoA-transferase reveal specificity determinants and illustrate the mechanism used by class I CoA-transferases. Biochemistry-Us, 51, 8422鈥?434.CrossRef
    11.Nakano, S., & Fukaya, M. (2008). Analysis of proteins responsive to acetic acid in Acetobacter: molecular mechanisms conferring acetic acid resistance in acetic acid bacteria. International Journal of Food Microbiology, 125, 54鈥?9.CrossRef
    12.Nakano, S., Fukaya, M., & Horinouchi, S. (2004). Enhanced expression of aconitase raises acetic acid resistance in Acetobacter aceti. FEMS Microbiology Letters, 235, 315鈥?22.CrossRef
    13.Matsushita, K., Inoue, T., Adachi, O., & Toyama, H. (2005). Acetobacter aceti possesses a proton motive force-dependent efflux system for acetic acid. Journal of Bacteriology, 187, 4346鈥?352.CrossRef
    14.Nakano, S., Fukaya, M., & Horinouchi, S. (2006). Putative ABC transporter responsible for acetic acid resistance in Acetobacter aceti. Applied and Environmental Microbiology, 72, 497鈥?05.CrossRef
    15.Azuma, Y., Hosoyama, A., Matsutani, M., Furuya, N., Horikawa, H., Harada, T., Hirakawa, H., Kuhara, S., Matsushita, K., Fujita, N., & Shirai, M. (2009). Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Research, 37, 5768鈥?783.CrossRef
    16.Illeghems, K., De Vuyst, L., & Weckx, S. (2013). Complete genome sequence and comparative analysis of Acetobacter pasteurianus 386B, a strain well-adapted to the cocoa bean fermentation ecosystem. BMC Genomics, 14, 526.CrossRef
    17.Sakurai, K., Arai, H., Ishii, M., & Igarashi, Y. (2011). Transcriptome response to different carbon sources in Acetobacter aceti. Microbiology, 157, 899鈥?10.CrossRef
    18.Lasko, D. R., Schwerdel, C., Bailey, J. E., & Sauer, U. (1997). Acetate-specific stress response in acetate-resistant bacteria: an analysis of protein patterns. Biotechnology Progress, 13, 519鈥?23.CrossRef
    19.Steiner, P., & Sauer, U. (2001). Proteins induced during adaptation of Acetobacter aceti to high acetate concentrations. Applied and Environmental Microbiology, 67, 5474鈥?481.CrossRef
    20.Andres-Barrao, C., Saad, M. M., Chappuis, M. L., Boffa, M., Perret, X., Ortega Perez, R., & Barja, F. (2012). Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation. Journal of Proteomics, 75, 1701鈥?717.CrossRef
    21.Lery, L. M., von Kruger, W. M., Viana, F. C., Teixeira, K. R., & Bisch, P. M. (2008). A comparative proteomic analysis of Gluconacetobacter diazotrophicus PAL5 at exponential and stationary phases of cultures in the presence of high and low levels of inorganic nitrogen compound. Biochimica et Biophysica Acta, 1784, 1578鈥?589.CrossRef
    22.Gao, W. (2014). Analysis of protein changes using two-dimensional difference gel electrophoresis. Methods in Molecular Biology, 1105, 17鈥?0.CrossRef
    23.Magdeldin, S., Enany, S., Yoshida, Y., Xu, B., Zhang, Y., Zureena, Z., Lokamani, I., Yaoita, E., & Yamamoto, T. (2014). Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis. Clinical Proteomics, 11, 16.CrossRef
    24.Brauner, J. M., Groemer, T. W., Stroebel, A., Grosse-Holz, S., Oberstein, T., Wiltfang, J., Kornhuber, J., & Maler, J. M. (2014). Spot quantification in two dimensional gel electrophoresis image analysis: comparison of different approaches and presentation of a novel compound fitting algorithm. BMC Bioinformatics, 15, 181.CrossRef
    25.Gadwala, M., Kari, N., Moger, N., & Vootla, S. K. (2013). Effective solubilization procedure for analysis of silkworm hemolymph proteins by two-dimensional gel electrophoresis. Applied Biochemistry and Biotechnology, 169, 1459鈥?466.CrossRef
    26.Binita, K., Kumar, S., Sharma, V., Sharma, V., & Yadav, S. (2014). Proteomic identification of Syzygium cumini seed extracts by MALDI-TOF/MS. Appl Biochem Biotech, 172, 2091鈥?105.CrossRef
    27.Lv, X. A., Jin, Y. Y., Li, Y. D., Zhang, H., & Liang, X. L. (2013). Genome shuffling of Streptomyces viridochromogenes for improved production of avilamycin. Applied Microbiology and Biotechnology, 97, 641鈥?48.CrossRef
    28.Quintero, Y., Poblet, M., Guillamon, J. M., & Mas, A. (2009). Quantification of the expression of reference and alcohol dehydrogenase genes of some acetic acid bacteria in different growth conditions. Journal of Applied Microbiology, 106, 666鈥?74.CrossRef
    29.Zulic, Z., & Minteer, S. D. (2009). Optimization of PQQ-dependent alcohol dehydrogenase activity in Gluconobacter sp 33 for use in biofuel cells. Abstr Pap Am Chem S, 237.
    30.F枚rster, H. J., Biemann, K., Haigh, W. G., Tattrie, N. H., & Colvin, J. R. (1973). The structure of novel C(35) pentacyclic terpenes from Acetobacter xylinum. The Biochemical Journal, 135, 133鈥?43.CrossRef
    31.Hageman, J., & Kampinga, H. H. (2009). Computational analysis of the human HSPH/HSPA/DNAJ family and cloning of a human HSPH/HSPA/DNAJ expression library. Cell Stress & Chaperones, 14, 1鈥?1.CrossRef
    32.Hartl, F. U., & Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: from nascent chain to folded protein. Science, 295, 1852鈥?858.CrossRef
    33.Kojima, K., & Nakamoto, H. (2005). Post-transcriptional control of the cyanobacterial hspA heat-shock induction. Biochemical and Biophysical Research Communications, 331, 583鈥?88.CrossRef
    34.Tessmer, N., Konig, S., Malkus, U., Reichelt, R., Potter, M., & Steinbuchel, A. (2007). Heat-shock protein HspA mimics the function of phasins sensu stricto in recombinant strains of Escherichia coli accumulating polythioesters or polyhydroxyalkanoates. Microbiology, 153, 366鈥?74.CrossRef
    35.Okamoto-Kainuma, A., Yan, W., Fukaya, M., Tukamoto, Y., Ishikawa, M., & Koizumi, Y. (2004). Cloning and characterization of the dnaKJ operon in Acetobacter aceti. Journal of Bioscience and Bioengineering, 97, 339鈥?42.CrossRef
    36.Okamoto-Kainuma, A., Yan, W., Kadono, S., Tayama, K., Koizumi, Y., & Yanagida, F. (2002). Cloning and characterization of groESL operon in Acetobacter aceti. Journal of Bioscience and Bioengineering, 94, 140鈥?47.CrossRef
    37.Mongkolsuk, S., Praituan, W., Loprasert, S., Fuangthong, M., & Chamnongpol, I. S. (1998). Identification and characterization of a new organic hydroperoxide resistance (ohr) gene with a novel pattern of oxidative stress regulation from Xanthomonas campestris pv. phaseoli. Journal of Bacteriology, 180, 2636鈥?643.
    38.Gordia, S., & Gutierrez, C. (1996). Growth-phase-dependent expression of the osmotically inducible gene osmC of Escherichia coli K-12. Molecular Microbiology, 19, 729鈥?36.CrossRef
    39.Lee, H. N., Lee, N. O., Han, S. J., Ko, I. J. and Oh, J. I. (2014) Regulation of the ahpC gene encoding alkyl hydroperoxide reductase in Mycobacterium smegmatis. PloS One, 9, e111680.
    40.Rocha, E. R., & Smith, C. J. (1999). Role of the alkyl hydroperoxide reductase (ahpCF) gene in oxidative stress defense of the obligate Anaerobe Bacteroides fragilis. Journal of Bacteriology, 181, 5701鈥?710.
    41.Okamoto-Kainuma, A., Ehata, Y., Ikeda, M., Osono, T., Ishikawa, M., Kaga, T., & Koizumi, Y. (2008). Hydrogen peroxide resistance of Acetobacter pasteurianus NBRC3283 and its relationship to acetic acid fermentation. Biosci Biotechn Biochem, 72, 2526鈥?534.CrossRef
    42.Tripathi, L., Zhang, Y., & Lin, Z. (2014). Bacterial sigma factors as targets for engineered or synthetic transcriptional control. Front Bioeng Biotechn, 2, 33.
    43.Volker, U., Maul, B., & Hecker, M. (1999). Expression of the sigmaB-dependent general stress regulon confers multiple stress resistance in Bacillus subtilis. Journal of Bacteriology, 181, 3942鈥?948.
    44.Sakurai, K., Yamazaki, S., Ishii, M., Igarashi, Y., & Arai, H. (2013). Role of the glyoxylate pathway in acetic acid production by Acetobacter aceti. Journal of Bioscience and Bioengineering, 115, 32鈥?6.CrossRef
    45.Mullins, E. A., Starks, C. M., Francois, J. A., Sael, L., Kihara, D., & Kappock, T. J. (2012). Formyl-coenzyme A (CoA):oxalate CoA-transferase from the acidophile Acetobacter aceti has a distinctive electrostatic surface and inherent acid stability. Protein Science, 21, 686鈥?96.CrossRef
    46.Zhuang, T., Chisholm, C., Chen, M., & Tamm, L. K. (2013). NMR-based conformational ensembles explain pH-gated opening and closing of OmpG channel. Journal of the American Chemical Society, 135, 15101鈥?5113.CrossRef
    47.Khalid, S., Bond, P. J., Carpenter, T., & Sansom, M. S. (2008). OmpA: gating and dynamics via molecular dynamics simulations. Biochimica et Biophysica Acta, 1778, 1871鈥?880.CrossRef
    48.Confer, A. W., & Ayalew, S. (2013). The OmpA family of proteins: roles in bacterial pathogenesis and immunity. Veterinary Microbiology, 163, 207鈥?22.CrossRef
    49.Baev, M. V., Baev, D., Radek, A. J., & Campbell, J. W. (2006). Growth of Escherichia coli MG1655 on LB medium: monitoring utilization of amino acids, peptides, and nucleotides with transcriptional microarrays. Applied Microbiology and Biotechnology, 71, 317鈥?22.CrossRef
    50.Smith, S. G., Mahon, V., Lambert, M. A., & Fagan, R. P. (2007). A molecular Swiss army knife: OmpA structure, function and expression. FEMS Microbiology Letters, 273, 1鈥?1.CrossRef
    51.Yohannes, E., Barnhart, D. M., & Slonczewski, J. L. (2004). pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12. Journal of Bacteriology, 186, 192鈥?99.CrossRef
    52.Yohannes, E., Thurber, A. E., Wilks, J. C., Tate, D. P., & Slonczewski, J. L. (2005). Polyamine stress at high pH in Escherichia coli K-12. BMC Microbiology, 5, 59.CrossRef
    53.Tachikawa, T., & Kato, J. (2011). Suppression of the temperature-sensitive mutation of the bamD gene required for the assembly of outer membrane proteins by multicopy of the yiaD gene in Escherichia coli. Bioscience, Biotechnology, and Biochemistry, 1, 162鈥?64.CrossRef
    54.Perez-Rueda, E., Collado-Vides, J., & Segovia, L. (2004). Phylogenetic distribution of DNA-binding transcription factors in bacteria and archaea. Comput Bio Chem, 28, 341鈥?50.CrossRef
  • 作者单位:Zhe Wang (1)
    Ning Zang (2)
    Jieyan Shi (1)
    Wei Feng (3)
    Ye Liu (3)
    Xinle Liang (1)

    1. Department of Biochemical Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
    2. Medical Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
    3. Hangzhou Xihu Brewing Company, Hangzhou, 310012, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
As a traditional Asian food for several centuries, vinegar is known to be produced by acetic acid bacteria. The Acetobacter species is the primary starter for vinegar fermentation and has evolutionarily acquired acetic acid resistance, in which Acetobacter pasteurianus Ab3 is routinely used for industrial production of rice vinegar with a high acidity (9 %, w/v). In contrast to the documented short-term and low acetic acid effects on A. pasteurianus, here we investigated the molecular and cellular signatures of long-term and high acetic acid responses by proteomic profiling with bidimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI TOF/MS) analyses. Protein spots of interest were selected based on the threshold ANOVA p value of 0.05 and minimal twofold of differential expression, leading to the identification of 26 proteins that are functionally enriched in oxidoreductase activity, cell membrane, and metabolism. The alterations in protein functioning in respiratory chain and protein denaturation may underlay cellular modifications at the outer membrane. Significantly, we found that at higher acidity fermentation phase, the A. pasteurianus Ab3 cells would adapt to distinct physiological processes from that of an ordinary vinegar fermentation with intermediate acidity, indicating increasing energy requirement and dependency of membrane integrity during the transition of acetic acid production. Together, our study provided new insights into the adaptation mechanisms in A. pasteurianus to high acetic acid environments and yield novel regulators and key pathways during the development of acetic acid resistance. Keywords Acetic acid resistance Vinegar fermentation Acetobacter pasteurianus Bidimensional gel electrophoresis MALDI-TOF-MS

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700