Sensitivity of HF radar-derived surface current self-organizing maps to various processing procedures and mesoscale wind forcing
详细信息    查看全文
  • 作者:Ivica Vilibić ; Hrvoje Kalinić ; Hrvoje Mihanović ; Simone Cosoli…
  • 关键词:Self ; organizing maps ; Ocean surface currents ; Mesoscale meteorological models ; Adriatic Sea
  • 刊名:Computational Geosciences
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:20
  • 期:1
  • 页码:115-131
  • 全文大小:4,249 KB
  • 参考文献:1.Kohonen, T.: Self-organized information of topologically correct features maps. Biol. Cybern. 43, 59–69 (1982)CrossRef
    2.Kohonen, T.: : Self-Organizing Maps, Springer Series Information Science, 3rd, vol. 30, p 501. Springer, New York (2001)
    3.Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Trans. Neural Netw. 11, 586–600 (2000)CrossRef
    4.Fritzke, B.: Growing cell structures—a self-organizing network for unsupervised and supervised learning. Neural Netw. 7, 1441–1460 (1994)CrossRef
    5.Kohonen, T., Oja, E., Simula, O., Visa, A., Kangas, J.: Engineering applications of the self-organizing map. IEEE Proc. 84, 1358–1384 (1996)CrossRef
    6.Herrero, J., Valencia, A., Dopazo, J.: A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17, 126–136 (2001)CrossRef
    7.Xu, R, Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16, 645–678 (2005)CrossRef
    8.Kolehmainen, M., Martikainen, H., Ruuskanen, J.: Neural networks and periodic components used in air quality forecasting. Atmos. Environ. 35, 815–825 (2001)CrossRef
    9.Fan, S., Chen, L.N.: Short-term load forecasting based on an adaptive hybrid method. IEEE Trans. Power Syst. 21, 392–401 (2006)CrossRef
    10.Cavazos, T.: Using self-organizing maps to investigate extreme climate events: an application to wintertime precipitation in the Balkans. J. Clim. 13, 1718–1732 (2000)CrossRef
    11.Hewitson, B.C., Crane, R.G.: Self-organizing maps: applications to synoptic climatology. Clim. Res. 22, 13–26 (2002)CrossRef
    12.Huth, R., Beck, C., Philipp, A., Demuzere, M., Ustrnul, Z., Cahynova, M., Kysely, J., Tveito, O.E.: Classifications of atmospheric circulation patterns recent advances and applications. Trends Dir. Clim. Res. 1146, 105–152 (2008)
    13.Richardson, A.J., Risien, C., Shillington, F.A.: Using self-organizing maps to identify patterns in satellite imagery. Prog. Oceanogr. 59, 223–239 (2003)CrossRef
    14.Mau, J.C., Wang, D.P., Ullman, D.S., Codiga, D.L.: Characterizing Long Island Sound outflows from HF radar using self-organizing maps. Estuar. Coast. Shelf Sci. 74, 155–165 (2007)CrossRef
    15.Richardson, A.J., Pfaff, M.C., Field, J.G., Silulwane, N.F., Shillington, F.A.: Identifying characteristic chlorophyll a profiles in the coastal domain using an artificial neural network. J. Plankton Res. 24, 1289–1303 (2002)CrossRef
    16.Lee, Y.J., Lwiza, K.M.M.: Characteristics of bottom dissolved oxygen in Long Island Sound. New York Estuar. Coastal Shelf Sci. 76, 187–200 (2008)CrossRef
    17.Gutierrez, J.M., Cano, R., Cofino, A.S., Sordo, C.: Analysis and downscaling multi-model seasonal forecasts in Peru using self-organizing maps. Tellus A 57, 435–447 (2005)CrossRef
    18.Allen, J.I., Somerfield, P.J., Gilbert, F.J.: Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models. J. Mar. Syst. 64, 3–14 (2007)CrossRef
    19.Liu, Y., Weisberg, R.H., Mooers, C.N.K.: Performance evaluation of the self-organizing map for feature extraction. J. Geophys. Res. 111, C05018 (2006). doi:10.​1029/​2005JC003117 CrossRef
    20.Liu, Y., Weisberg, R.H., Shay, L.K.: Current patterns on the West Florida shelf from joint self-organizing map analyses of HF radar and ADCP data. J. Atmos. Ocean. Technol. 24, 702–712 (2007)CrossRef
    21.Mihanović, H., Cosoli, S., Vilibić, I., Ivanković, D., Dadić, V., Gačić, M.: Surface current patterns in the northern Adriatic extracted from high frequency radar data using self-organizing map analysis. J. Geophys. Res. 116, C08033 (2011). doi:10.​1029/​2011JC007104
    22.Essen, H.H., Gurgel, K.-W., Schlick, T.: On the accuracy of current measurements by means of HF radar. IEEE J. Ocean. Eng. 25, 472–480 (2000)CrossRef
    23.Kim, S.Y., Terrill, E.J., Cornuelle, B.D., Jones, B., Washburn, L., Moline, M.A., Paduan, J.D., Garfield, N., Largier, J.L., Crawford, G., Kosro, P.M.: Mapping the U.S. West Coast surface circulation: a multiyear analysis of high-frequency radar observations. J. Geophys. Res. 116, C03011 (2011). doi:10.​1029/​2010JC006669
    24.Paduan, J.D., Washburn, L.: High-frequency radar observations of ocean surface currents. Ann. Rev. Mar. Sci. 5, 115–136 (2013)CrossRef
    25.Kirincich, A.R., Lentz, S.J., Farrar, J.T., Ganju, N.K.: The spatial structure of tidal and mean circulation over the inner shelf south of Martha’s Vineyard, Massachusetts. J. Phys. Oceanogr. 43, 1940–1958 (2013)CrossRef
    26.Shay, L.K., Graber, H.C., Ross, D.B., Chapman, R.D.: Mesoscale ocean surface current structure detected by high-frequency radar. J. Atmos. Ocean. Technol. 12, 881–900 (1995)CrossRef
    27.Gough, M.K., Garfield, N., McPhee-Shaw, E.: An analysis of HF radar measured surface currents to determine tidal, wind-forced, and seasonal circulation in the Gulf of the Farallones, California, United States. J. Geophys. Res. 115, C04019 (2010). doi:10.​1029/​2009JC005644 CrossRef
    28.Gurgel, K.W., Dzvonkovskaya, A., Pohlmann, T., Schlick, T., Gill, E.: Simulation and detection of tsunami signatures in ocean surface currents measured by HF radar. Ocean Dyn. 61, 1495–1507 (2011)CrossRef
    29.Kovačević, V., Gačić, M., Mazzoldi, A., Dallaporta, G., Gaspari, A.: Sea-surface currents measured by coastal HF radar offshore Ancona. Boll. Geofis. Teor. Appl. 41, 339–355 (2000)
    30.Chavanne, C., Janeković, I., Flament, P., Poulain, P.M., Kuzmić, M., Gurgel, K.W.: Tidal currents in the northwestern Adriatic: high-frequency radio observations and numerical model predictions. J. Geophys. Res. 112, C03S21 (2007). doi:10.​1029/​2006JC003523 CrossRef
    31.Cosoli, S., Mazzoldi, A., Gačić, M.: Validation of surface current measurements in the northern Adriatic Sea from high-frequency radars. J. Atmos. Ocean. Technol. 27, 908–919 (2010)CrossRef
    32.Cosoli, S., Gačić, M., Mazzoldi, A.: Surface current variability and wind influence in the northeastern Adriatic Sea as observed from high-frequency (HF) radar measurements. Cont. Shelf Res. 33, 1–13 (2012)CrossRef
    33.Cosoli, S., Ličer, M., Vodopivec, M., Malačič, V.: Surface circulation in the Gulf of Trieste (northern Adriatic Sea) from radar, model, and ADCP comparisons. J. Geophys. Res. Oceans 118, 6183–6200 (2013)CrossRef
    34.Orlić, M., Dadić, V., Grbec, B., Leder, N., Marki, A., Matić, F., Mihanović, H., Beg Paklar, G., Pasarić, M., Pasarić, Z., Vilibić, I.: Wintertime buoyancy forcing, changing seawater properties and two different circulation systems produced in the Adriatic. J. Geophys. Res. 111, C03S07 (2006). doi:10.​1029/​2005JC003271
    35.Campanelli, A., Grilli, F., Paschini, E., Marini, M.: The influence of an exceptional Po River flood on the physical and chemical oceanographic properties of the Adriatic Sea. Dyn. Atmos. Oceans 52, 284–297 (2011)CrossRef
    36.Mihanović, H., Vilibić, I., Carniel, S., Tudor, M., Russo, A., Bergamasco, A., Bubić, N., Ljubešić, Z., Viličić, D., Boldrin, A., Malačič, V., Celio, M., Comici, C., Raicich, F.: Exceptional dense water formation on the Adriatic shelf in the winter of 2012. Ocean Sci. 9, 561–572 (2013)CrossRef
    37.Grisogono, B., Belušić, D.: A review of recent advances in understanding the meso and microscale properties of the severe Bora wind. Tellus A 61, 1–16 (2009)CrossRef
    38.Janeković, I., Kuzmić, M.: Numerical simulation of the Adriatic Sea principal tidal constituents. Ann. Geophys. 23, 3207–3218 (2005)CrossRef
    39.Prtenjak, M.T., Grisogono, B.: Sea/land breeze climatological characteristics along the northern Croatian Adriatic coast. Theor. Appl. Climatol. 90, 201–215 (2007)CrossRef
    40.Allard, R., Rogers, E., Martin, P., Jensen, T., Chu, P., Campbell, T., Dykes, J., Smith, T., Choi, J., Gravois, U.: The US Navy coupled ocean-wave prediction system. Oceanography 27, 92–103 (2014)CrossRef
    41.Barth, A., Alvera-Azcarate, A., Gurgel, K.W., Staneva, J., Port, A., Beckers, J.M., Stanev, E.V.: Ensemble perturbation smoother for optimizing tidal boundary conditions by assimilation of high-frequency radar surface currents—application to the German Bight. Ocean Sci. 6, 161–178 (2010)CrossRef
    42.Wahle, K., Stanev, E.V.: Consistency and complementarity of different coastal ocean observations: a neural network-based analysis for the German Bight. Geophys. Res. Lett. 38, L10603 (2013). doi:10.​1029/​2011GL047070
    43.Thomson, R.E., Emery, W.J. Data Analysis Methods in Physical Oceanography, 3rd. Elsevier Science, Amsterdam, London, New York (2014)
    44.Gurgel, K.W., Essen, H.H., Kingsley, S.P.: HF radars: physical limitations and recent developments. Coast. Eng. 37, 201–218 (1999)CrossRef
    45.Crombie, D.D.: Doppler spectrum of sea echo at 13.56 Mc/s. Nature 175, 681–682 (1955)CrossRef
    46.Kohut, J.T., Glenn, S.M.: Improving HF radar surface current measurements with measured antenna beam patterns. J. Atmos. Ocean. Technol. 20, 1303–1316 (2003)CrossRef
    47.Cosoli, S., Bolzon, G., Mazzoldi, A.: A real-time and offline quality control methodology for SeaSonde high-frequency radar currents. J. Atmos. Ocean. Technol. 29, 1313–1328 (2012)CrossRef
    48.Lipa, B.J., Barrick, D.: Least-squares methods for the extraction of surface currents from Codar crossed-loop data – application at ARSLOE. IEEE J. Ocean. Eng. 8, 226–253 (1983)CrossRef
    49.Barrick, D.E., Lipa, B.J.: An evaluation of least-squares and closed-form dual-angle methods for CODAR surface-current applications. IEEE J. Ocean. Eng. 11, 322–326 (1986)CrossRef
    50.Chapman, R.D., Graber, H.C.: Validation of HF radar measurements. Oceanography 10(2), 76–79 (1997)CrossRef
    51.Kovačević, V., Gačić, M., Mancero Mosquera, I., Mazzoldi, A., Marinetti, S.: HF radar observations in the northern Adriatic: surface current field in front of the Venetian Lagoon. J. Mar. Syst. 51, 95–122 (2004)CrossRef
    52.de Paolo, T., Terrill, E.: Skill assessment of resolving ocean surface current structure using compact-antenna-style HF radar and the MUSIC direction-finding algorithm. J. Atmos. Ocean. Technol. 24, 1277–1300 (2007)CrossRef
    53.Aladin International Team: The ALADIN project: mesoscale modelling seen as a basic tool for weather forecasting and atmospheric research. WMO Bull. 46, 317–324 (1997)
    54.Tudor, M., Ivatek-Šahdan, S., Stanešić, A., Horvath, K., Bajić, A.: Forecasting weather in Croatia using ALADIN numerical weather prediction model. In: Zhang, Y., Ray, P. (eds.) Climate Change and Regional/Local Responses, pp 59–88. InTech, Rijeka (2013)
    55.Ivatek-Šahdan, S., Tudor, M.: Use of high-resolution dynamical adaptation in operational suite and research impact studies. Meteorol. Z. 13(2), 1–10 (2004)
    56.Tudor, M., Ivatek-Šahdan, S.: The case study of bura of 1st and 3rd February 2007. Meteorol. Z. 19, 453–466 (2012)CrossRef
    57.Geleyn, J.-F.: Interpolation of wind, temperature and humidity values from model levels to the height of measurement. Tellus 40A, 347–351 (1988)CrossRef
    58.Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Wang, W., Powers, J.G.: A description of the advanced research WRF Version 3, NCAR Technical Note NCAR/TN–475 + STR (2008)
    59.Davies, H.C.: A lateral boundary formulation for multi-level prediction models. Q. J. Royal Meteorol. Soc. 102, 405–418 (1976)
    60.Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 102(D14), 16663–16682 (1997)CrossRef
    61.Dudhia, J.: A multi-layer soil temperature model for MM5, pp 49–50. The Sixth PSU/NCAR MM5 Users’ Workshop, Boulder, Colorado (1996)
    62.Hong, S.Y., Dudhia, J., Chen, S.H.: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather Rev. 132, 103–120 (2004)CrossRef
    63.Dudhia, J.: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 46, 3077–3107 (1989)CrossRef
    64.Hong, S.Y., Noh, Y., Dudhia, J.: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 134, 2318–2341 (2006)CrossRef
    65.žagar, N., Honzak, L., žabkar, R., Skok, G., Rakovec, J., Ceglar, A.: Uncertainties in a regional climate model in the mid-latitudes due to the nesting technique and the domain size. J. Geophys. Res. 118, 6189–6199 (2013)
    66.Ceglar, A., Honzak, L., žagar, N., Skok, G., žabkar, R., Rakovec, J.: Evaluation of precipitation in the ENSEMBLES regional climate models over the complex orography of Slovenia. Int. J. Clim. 35, 2574–2591 (2014). doi:10.​1002/​joc.​4158 CrossRef
    67.Kriesel, D.: A brief introduction to neural networks, available at http://​www.​dkriesel.​com , (2007). Accessed 3 December 2014
    68.Liu, Y., Weisberg, R.H.: A review of self-organizing map applications in meteorology and oceanography. In: Mwasiagi, J.I. (ed.) Self-Organizing Maps-Applications and Novel Algorithm Design, pp 253–272. InTech, Rijeka (2011)
    69.Kaski, S., Kangas, J., Kohonen, T.: Bibliography of self-organizing map (SOM) papers: 1981-1997. Neural Comput. Surv. 1, 102–350 (1998)
    70.Oja, M., Kaski, S., Kohonen, T.: Bibliography of self-organizing map (SOM) papers: 1998–2001 addendum. Neural Comput. Surv. 3, 1–156 (2003)
    71.Hewitson, B.C., Crane, R.G.: Neural Nets: Applications in Geography. Springer, New York (1994)CrossRef
    72.Schuenemann, K.C., Cassano, J.J., Finnis, J.: Forcing of precipitation over Greenland: synoptic climatology for 1961-99. J. Hydrometeorol. 10, 60–78 (2009)CrossRef
    73.Tambouratzis, T., Tambouratzis, G.: Meteorological data analysis using self-organizing maps. Int. J. Intell. Syst. 23, 735–759 (2008)CrossRef
    74.Yip, Z.K., Yau, M.K.: Application of artificial neural networks on North Atlantic tropical cyclogenesis potential index in climate change. J. Atmos. Ocean. Technol. 29, 1202–1220 (2012)CrossRef
    75.Iskandar, I.: Seasonal and interannual patterns of sea surface temperature in Banda Sea as revealed by self-organizing map. Cont. Shelf Res. 30, 1136–1148 (2010)CrossRef
    76.Hong, Y., Chiang, Y.M., Liu, Y., Hsu, K.L., Sorooshian, S.: Satellite-based precipitation estimation using watershed segmentation and growing hierarchical self-organizing map. Int. J. Remote Sens. 27, 5165–5184 (2006)CrossRef
    77.Liu, Y., Weisberg, R.H.: Patterns of ocean current variability on the West Florida Shelf using the self-organizing map. J. Geophys. Res. 110, C06003 (2005). doi:10.​1029/​2004JC002786
    78.Kropp, J., Klenke, T.: Phenomenological pattern recognition in the dynamical structures of tidal sediments from the German Wadden Sea. Ecol. Modell. 103, 151–170 (1997)CrossRef
    79.Bandelj, V., Socal, G., Park, Y.S., Lek, S., Coppola, J., Camatti, E., Capuzzo, E., Milani, L., Solidoro, C.: Analysis of multitrophic plankton assemblages in the Lagoon of Venice. Mar. Ecol. Prog. Ser. 368, 23–40 (2008)CrossRef
    80.Solidoro, C., Bastianini, M., Bandelj, V., Codermatz, R., Cossarini, G., Melaku Canu, D., Ravagnan, E., Salon, S., Trevisani, S.: Current state, scales of variability & trends of biogeochemical properties in the northern Adriatic Sea. J. Geophys. Res. 114, C07S91 (2009). doi:10.​1029/​2008JC004838 CrossRef
    81.Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: SOM Toolbox for Matlab 5, Technical Report A57, FIN-02015 HUT, p 59. Helsinki University of Technology, Helsinki (2000)
    82.Malačič, V., Viezzoli, D., Cushman-Roisin, B.: Tidal dynamics in the northern Adriatic Sea. J. Geophys. Res. 105, 26265–26280 (2000)CrossRef
    83.Cushman-Roisin, B., Naimie, C.E.: A 3D finite-element model of the Adriatic tides. J. Mar. Syst. 37, 279–297 (2002)CrossRef
    84.Pawlowicz, R., Beardsley, B., Lentz, S.: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci. 28, 929–937 (2002)CrossRef
    85.Raicich, F., Orlić, M., Vilibić, I., Malačič, V.: A case study of the Adriatic seiches (December 1997). Il Nuovo Cimento C 22, 715–726 (1999)
    86.Krajcar, B., Orlić, M.: Seasonal variability of inertial oscillations in the northern Adriatic. Cont. Shelf Res. 15, 1221–1233 (1995)CrossRef
    87.Whiteman, C.D., Bian, X.D.: Solar semidiurnal tides in the troposphere: detection by radar profilers. Bull. Am. Meteorol. Soc. 77, 529–542 (1996)CrossRef
    88.Zhang, Z., Schwartz, S., Wagner, L., Miller, W.: A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203–214 (2000)CrossRef
    89.Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press and McGraw-Hill (2009)
    90.Kundu, P.K.: Ekman veering observed near the ocean bottom. J. Phys. Oceanogr. 6, 238–242 (1976)CrossRef
    91.Pasarić, Z., Belušić, D., Klaić, Z.B.: Orographic influences on the Adriatic sirocco wind. Ann. Geophys. 25, 1263–1267 (2007)CrossRef
    92.Cavaleri, L., Bertotti, L., Tescaro, N.: The modelled wind climatology of the Adriatic Sea. Theor. Appl. Climatol. 56, 231–254 (1997)CrossRef
    93.Malačič, V., Celio, M., Čermelj, B., Bussani, A., Comici, C.: Interannual evolution of seasonal thermohaline properties in the Gulf of Trieste (northern Adriatic) 1991-2003. J. Geophys. Res. 111, C08009 (2006). doi:10.​1029/​2005JC003267
    94.Vilibić, I., Mihanović, H., Šepić, J., Matijević, S.: Using self-organising maps to investigate long-term changes in deep Adriatic water patterns. Cont. Shelf Res. 31, 695–711 (2011)CrossRef
    95.Pölzlbauer, G.: Survey and comparison of quality measures for self-organizing maps. In: Paralič, J, Pölzlbauer, G, Rauber, A (eds.) Proceedings of the Fifth Workshop on Data Analysis (WDA’04), pp 67–82. Elfa Academic Press, Vysoké Tatry, Slovakia
    96.Jeffries, M.A., Lee, C.M.: A climatology of the northern Adriatic Sea’s response to bora and river forcing. J. Geophys. Res. 112, C03S02 (2007). doi:10.​1029/​2006JC003664 CrossRef
    97.Lee, T.L., Jeng, D.S.: Application of artificial neural networks in tide-forecasting. Ocean Eng. 29, 1003–1022 (2002)CrossRef
    98.Makarynskyy, O.: Improving wave predictions with artificial neural networks. Ocean Eng. 31, 704–729 (2004)CrossRef
    99.Cowles, G.W.: Parallelization of the FVCOM coastal ocean model. Int. J. High Perform. Comput. Appl. 22, 177–193 (2008)CrossRef
    100.Haidvogel, D.B., Beckmann, A.: Numerical Ocean Circulation Modeling. Imperial College Press, London (1999)
    101.Hall, D.: Rejuvenation, diversification and imagery: sustainability conflicts for tourism policy in the Eastern Adriatic. J. Sustain. Tour. 11, 280–294 (2009)CrossRef
    102.Ferraro, G., Bernardini, A., David, M., Meyer-Roux, S., Muellenhoff, O., Perkovic, M., Tarchi, D., Topouzelis, K.: Towards an operational use of space imagery for oil pollution monitoring in the Mediterranean basin: a demonstration in the Adriatic Sea. Mar. Pollut. Bull. 53, 403–422 (2007)CrossRef
  • 作者单位:Ivica Vilibić (1)
    Hrvoje Kalinić (1)
    Hrvoje Mihanović (1)
    Simone Cosoli (2) (3)
    Martina Tudor (4)
    Nedjeljka žagar (5)
    Blaž Jesenko (5)

    1. Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000, Split, Croatia
    2. Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Borgo Grotta Gigante 42/c, 34010, Sgonico, Trieste, Italy
    3. School of Civil, Environmental and Mining Engineering, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
    4. Meteorological and Hydrological Service, Grič 3, 10000, Zagreb, Croatia
    5. Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Mathematical Modeling and IndustrialMathematics
    Geotechnical Engineering
    Hydrogeology
    Soil Science and Conservation
  • 出版者:Springer Netherlands
  • ISSN:1573-1499
文摘
We performed a number of sensitivity experiments by applying a mapping technique, self-organizing maps (SOM) method, to the surface current data measured by high-frequency (HF) radars in the northern Adriatic and surface winds modelled by two state-of-the-art mesoscale meteorological models, the Aladin (Aire Limitée Adaptation Dynamique Développement InterNational) and the Weather and Research Forecasting models. Surface current data used for the SOM training were collected during a period in which radar coverage was the highest: between February and November 2008. Different pre-processing techniques, such as removal of tides and low-pass filtering, were applied to the data in order to test the sensitivity of characteristic patterns and the connectivity between different SOM solutions. Topographic error did not exceed 15 %, indicating the applicability of the SOM method to the data. The largest difference has been obtained when comparing SOM patterns originating from unprocessed and low-pass filtered data. Introduction of modelled winds in joint SOM analyses stabilized the solutions, while sensitivity to wind forcing coming from the two different meteorological models was found to be small. Such a low sensitivity is considered to be favourable for creation of an operational ocean forecasting system based on neural networks, HF radar measurements and numerical weather prediction mesoscale models.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700