CO hydrogenation to higher alcohols over Ni- and Mo-modified Cu/CeO2 catalyst
详细信息    查看全文
  • 作者:Jun Chen ; Wei Li ; Rongchun Shen
  • 关键词:Co ; precipitation ; NH3·H2O ; Higher Alcohol ; Pyrogallol ; Temperature Addictive Agent
  • 刊名:Korean Journal of Chemical Engineering
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:33
  • 期:2
  • 页码:500-506
  • 全文大小:587 KB
  • 参考文献:1.J. Bao, J. He, Y. Zhang, Y. Yoneyama and N. Tsubaki, Angew. Chem. Int. Ed., 47, 353 (2008).CrossRef
    2.J. J. Spivey and A. Egbebia, Chem. Soc. Rev., 36, 1514 (2007).CrossRef
    3.Q. Zhang, J. Kang and Y. Wang, ChemCatChem., 2, 1030 (2010).CrossRef
    4.R. G. Herman, Catal. Today, 55, 233 (2000).CrossRef
    5.P. Courty, P. Chaumette, C. Raimbault and P. Travers, Rev. Inst. Fr. Pet., 45, 561 (1990).CrossRef
    6.J. J. Spivey and A. Egbebi, Chem. Soc. Rev., 36, 1514 (2007).CrossRef
    7.J. M. Christensen, P. M. Mortensen, R. Trane, P. A. Jensen and A. D. Jensen, Appl. Catal. A: Gen., 366, 29 (2009).CrossRef
    8.D. H. Mei, R. Rousseau, S. M. Kathmann, V. A. Glezakou, M. H. Engelhard, W. L. Jiang, C. M. Wang, M. A. Gerber, J. F. White and D. J. Stevens, J. Catal., 271, 325 (2010).CrossRef
    9.Q. W. Zhang, X. H. Li and K. Fujimoto, Appl. Catal. A: Gen., 309, 28 (2006).CrossRef
    10.M. B. Jorge, G.-C. Anne and Y. K. Andrei, Chemcatchem, 6, 1788 (2014).CrossRef
    11.R. Xu, S. Zhang and C. B. Roberts, Ind. Eng. Chem. Res., 52, 14514 (2013).CrossRef
    12.M. Xu, M. J. L. Gines, A.-M. Hilmen, B. L. Stephens and E. Iglesia, J. Catal., 171, 130 (1997).CrossRef
    13.A.-M. Hilmen, M. Xu, M. J. L. Gines and E. Iglesia, Appl. Catal. A: Gen., 169, 355 (1998).CrossRef
    14.D. S. Kim, I. E. Wachs and K. Segawa, J. Catal., 149, 268 (1994).CrossRef
    15.Y. Liu, K. Murata, M. I. Takahara and K. Okabe, Fuel, 104, 62 (2010).CrossRef
    16.M. Xiang, D. Li, H. Xiao, J. Zhang, H. Qi, W. Li, B. Zhong and Y. Sun, Fuel, 87, 599 (2008).CrossRef
    17.E. T. Liakakou, E. Heracleous, K. S. Triantafyllidis and A. A. Lemonidou, Appl. Catal. B, 165, 296 (2015).CrossRef
    18.W. Feng, Q. Wang, B. Jiang and P. Ji, Ind. Eng. Chem. Res., 50, 11067 (2011).CrossRef
    19.A. Tavakoli, M. Sohrabi and A. Kargari, J. Chem. Eng., 136, 358 (2008).CrossRef
    20.Y. Liu, T. Hayakawa, T. Ishii, M. Kumagai, H. Yasuda, K. Suzuki, S. Hamakawa and K. Murata, Appl. Catal. A: Gen., 210, 301 (2001).CrossRef
    21.M.-F. Luo, J.-M. Ma, J.-Q. Lu, Y.-P. Song and Y.-J. Wang, J. Catal., 246, 52 (2007).CrossRef
    22.G. Avgouropoulos, T. Ioannides and H. Matralis, Appl. Catal. B: Environ., 56, 87 (2005).CrossRef
    23.X. Zheng, X. Zhang, X. Wang, S. Wang and S. Wu, Appl. Catal. A: Gen., 295, 142 (2005).CrossRef
    24.M. Manzoli, R. di Monte, F. Boccuzzi, S. Coluccia and J. Kaspar, Appl. Catal. B: Environ., 61, 192 (2005).CrossRef
    25.F. Mariño, B. Schönbrod, M. Moreno, M. Jobbágy, G. Baronetti and M. Laborde, Catal. Today, 133-135, 735 (2008).CrossRef
    26.Y. Liu, T. Hayakawa, K. Suzuki, S. Hamakawa, T. Tsunoda, T. Ishii and M. Kumagai, Appl. Catal. A: Gen., 223, 137 (2002).CrossRef
    27.Y. Liu, T. Hayakawa, T. Tsunoda, K. Suzuki, S. Hamakawa, K. Murata, R. Shiozaki, T. Ishii and M. Kumagai, Top Catal., 22, 205 (2003).CrossRef
    28.S. Velu, K. Suzuki and C. S. Gopinath, J. Phys. Chem. B, 106, 12737 (2002).CrossRef
    29.F. M. Capece, V. Dicastro, C. Furlani, G. Mattogno, C. Fragale, M. Gargano and M. Rossi, J. Electron Spectrosc. Relat. Phenom., 27, 119 (1982).CrossRef
    30.J. Haber, T. Machej, L. Ungier and J. Ziolkowski, J. Solid State Chem., 25, 207 (1978).CrossRef
    31.F. M. Capece, V. Dicastro, C. Furlani, G. Mattogno, C. Fragale, M. Gargano and M. Rossi J. Electron Spectrosc. Relat. Phenom., 27, 119 (1982).CrossRef
    32.J. Hedman, M. Klasson, R. Nilsson, C. Nordling, M. F. Sorokina, O. I. Kljushnikov, S. A. Nemnonov, V. A. Trapeznikov and V. G. Zyranov, Phys. Scripta, 4, 195 (1971).CrossRef
    33.G. Johansson, J. Hedman, A. Berndtsson, M. Klasson and R. Nilsson, J. Electron Spectrosc. Relat. Phenom., 2, 295 (1973).CrossRef
    34.D. Chadwick and T. Hashemi, Corros. Sci., 18, 39 (1978).CrossRef
    33.J. G. Jolley, G. G. Geesey, M. R. Haukins, R. B. Write and P. L. Wichlacz, Appl. Surf. Sci., 37, 469 (1989).CrossRef
    35.C. Battistoni, G. Mattongno, E. Paparazzo and L. Naldini, Inorg. Chim. Acta, 102, 1 (1985).CrossRef
    36.C. J. Powell, N. E. Erickson and T. Jach, J. Vac. Sci. Technol., 20, 625 (1981).CrossRef
    37.J. Haber, T. Machej, L. Ungier and J. Ziolkowski, J. Solid State Chem., 25, 207 (1978).CrossRef
    38.N. S. McIntyre, S. Sunder, D. W. Shoesmith and F. W. Stanchell, J. Vac. Sci. Technol., 18, 714 (1981).CrossRef
    39.T. Fujitani, M. Satio, Y. Kanai, T. Kakumoto, T. Watanabe, J. Nakamura and T. Uchijima, Catal. Lett., 25, 271 (1994).CrossRef
    40.Q. Yan, P. T. Doan, T. Hossein, C. G. Amit and G. W. Mark, J. Phys. Chem. C, 112, 11847 (2008).CrossRef
    41.S. M. Cletus White and A. J. Bard, Anal. Chem., 38, 61 (1966).CrossRef
    42.A. Safavi and E. Shams, Anal. Chim. Acta, 385, 265 (1999).CrossRef
    43.D. Li, C. Yang, H. Qi, H. Zhang, W. Li, Y. Sun and B. Zhong, Catal. Commun., 5, 605 (2004).CrossRef
    44.M. Gupta, M. L. Smith and J. J. Spivey, ACS Catal., 1, 641 (2011).CrossRef
  • 作者单位:Jun Chen (1)
    Wei Li (1)
    Rongchun Shen (1)

    1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Industrial Chemistry and Chemical Engineering
    Catalysis
    Materials Science
    Biotechnology
  • 出版者:Springer New York
  • ISSN:1975-7220
文摘
Ni-Mo promoted Cu/CeO2 catalyst was synthesized by co-precipitation method using 28%wt NH3·H2O as the precipitant. The catalysts were characterized by BET, XRD, TPR and XPS. The results showed that Ni and Mo could promote the reducibility of Cu, and the interaction between Ni and Mo may be needed for catalytic activity and higher alcohols synthesis. Therefore, CuNiMo/CeO2 catalyst showed a higher activity for higher alcohols synthesis than Cu/CeO2. In the meantime, the effect of pyrogallol used in preparing the CuNiMo/CeO2 catalyst was investigated. Pyrogallol had a significant influence on lowering the methanol selectivity and improving the C2+-OH selectivity. The methanol selectivity decreased from 52.99% to 44.81% and S C2+OH /S MeOH (MeOH denoted as methanol) ratio increased from 0.27 to 0.35. The XPS results gave evidence that pyrogallol can form complexes with Cu+ on the CeO2 support, which causes methanol decrease. In addition, pyrogallol could serve as a “temperature addictive agent” to save power. Keywords Co-precipitation NH3·H2O Higher Alcohol Pyrogallol Temperature Addictive Agent

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700