In vivo and in situ synchrotron radiation-based μ-XRF reveals elemental distributions during the early attachment phase of barnacle larvae and juvenile barnacles
详细信息    查看全文
  • 作者:Tobias Senkbeil ; Tawheed Mohamed ; Rolf Simon…
  • 关键词:Barnacles ; Biological adhesive ; Elemental imaging ; Marine biofouling ; Synchrotron ; μ ; XRF
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:408
  • 期:5
  • 页码:1487-1496
  • 全文大小:7,436 KB
  • 参考文献:1.Callow JA, Callow ME. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun. 2011;2:244.CrossRef
    2.Kamino K. In: Thomopoulos S, Birman V, Genin GM, editors. Structural interfaces and attachments in biology. New York: Springer; 2013.
    3.Kamino K. In: Smith AM, Callow JA, editors. Biological adhesives. Berlin: Springer; 2006.
    4.Barlow DE, Dickinson GH, Orihuela B, Rittschof D, Wahl KJ. In situ ATR–FTIR characterization of primary cement interfaces of the barnacle Balanus amphitrite. Biofouling. 2009;25:359–66.CrossRef
    5.Barlow DE, Dickinson GH, Orihuela B, Kulp III JL, Rittschof D, Wahl KJ. Characterization of the adhesive plaque of the barnacle Balanus amphitrite: Amyloid-like nanofibrils are a major component. Langmuir. 2010;26:6549–56.CrossRef
    6.Kamino K. Molecular design of barnacle cement in comparison with those of mussel and tubeworm. J Adhes. 2010;86:96–110.CrossRef
    7.Dougherty WJ. Zinc metalloprotease activity in the cement precursor secretion of the barnacle Chthamalus fragilis Darwin. Tissue Cell. 1996;28:439–47.CrossRef
    8.Dougherty WJ. Carboxypeptidase activity of the zinc metalloprotease in the cement precursor secretion of the barnacle Chthamalus fragilis Darwin. Comp Biochem Phys B. 1997;117:565–70.CrossRef
    9.Dickinson GH, Vega IE, Wahl KJ, Orihuela B, Beyley V, Rodriguez EN, et al. Barnacle cement: a polymerization model based on evolutionary concepts. J Exp Biol. 2009;212:3499–510.CrossRef
    10.Kamino K. Absence of cross-linking via trans-glutaminase in barnacle cement and redefinition of the cement. Biofouling. 2010;26:755–60.CrossRef
    11.Aldred N, Clare AS. The adhesive strategies of cyprids and development of barnacle-resistant marine coatings. Biofouling. 2008;24:351–63.CrossRef
    12.Aldred N, Høeg JT, Maruzzo D, Clare AS. Analysis of the behaviours mediating barnacle cyprid reversible adhesion. PLoS ONE. 2013;8:e68085.CrossRef
    13.Petrone L, Aldred N, Emami K, Enander K, Ederth T, Clare AS. Chemistry-specific surface adsorption of the barnacle settlement-inducing protein complex. Interf Focus. 2015;5:20140047.CrossRef
    14.Maruzzo D, Aldred N, Clare AS, Høeg JT. Metamorphosis in the cirripede crustacean Balanus amphitrite. PLoS ONE. 2012;7:e37408.CrossRef
    15.Gohad NV, Aldred N, Hartshorn CM, Lee YJ, Cicerone MT, Orihuela B, et al. Synergistic roles for lipids and proteins in the permanent adhesive of barnacle larvae. Nat Commun. 2014;5:4414.CrossRef
    16.Walker G. A study of the cement apparatus of the cypris larva of the barnacle Balanus balanoides. Mar Biol. 1971;9:205–12.CrossRef
    17.Walker G. The adhesion of barnacles. J Adhes. 1981;12:51–8.CrossRef
    18.Aldred N, Gohad NV, Petrone L, Orihuela B, Liedberg B, Ederth T, et al. Confocal microscopy-based goniometry of barnacle cyprid permanent adhesive. J Exp Biol. 2013;216:1969–72.CrossRef
    19.Phang IY, Aldred N, Clare AS, Callow JA, Vancso GJ. An in situ study of the nanomechanical properties of barnacle (Balanus amphitrite) cyprid cement using atomic force microscopy (AFM). Biofouling. 2006;22:245–50.CrossRef
    20.Schmidt M, Cavaco A, Gierlinger N, Aldred N, Fratzl P, Grunze M, et al. In situ imaging of barnacle (Balanus amphitrite) cyprid cement using confocal Raman microscopy. J Adhes. 2009;85:139–51.CrossRef
    21.Di Fino A, Petrone L, Aldred N, Ederth T, Liedberg B, Clare AS. Correlation between surface chemistry and settlement behaviour in barnacle cyprids (Balanus improvisus). Biofouling. 2014;30:143–52.CrossRef
    22.Simon R, Buth G, Hagelstein M. The X-ray-fluorescence facility at ANKA, Karlsruhe: Minimum detection limits and micro probe capabilities. Nucl Instrum Meth B. 2003;199:554–8.CrossRef
    23.Solé VA, Papillon E, Cotte M, Walter P, Susini J. A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta B. 2007;62:63–8.CrossRef
    24.Fernández MS, Vergara I, Oyarzún A, Arias JI, Rodríguez R, Wiff JP, et al. Extracellular matrix molecules involved in barnacle shell mineralization. Mater Res Soc Symp. 2002;724:3–9.
    25.Hockett D, Ingram P, LeFurgey A. Strontium and manganese uptake in the barnacle shell: electron probe microanalysis imaging to attain fine temporal resolution of biomineralization activity. Mar Environ Res. 1997;43:131–43.CrossRef
    26.Gohad NV, Dickinson GH, Orihuela B, Rittschof D, Mount AS. Visualization of putative ion-transporting epithelia in Amphibalanus amphitrite using correlative microscopy: Potential function in osmoregulation and biomineralization. J Exp Mar Biol Ecol. 2009;380:88–98.CrossRef
    27.Nousek NA. Shell formation and calcium transport in the barnacle Chthamalus fragilis. Tissue Cell. 1984;16:433–42.CrossRef
    28.Bernard FJ, Lane CE. Absorption and excretion of copper ion during settlement and metamorphosis of the barnacle Balanus amphitrite niveus. Biol Bull. 1961;121:438–48.CrossRef
    29.Walker G. “Copper” granules in the barnacle Balanus balanoides. Mar Biol. 1977;39:343–9.CrossRef
    30.Walker G, Rainbow PS, Foster P, Crisp DJ. Barnacles: possible indicators of zinc pollution? Mar Biol. 1975;30:57–65.CrossRef
    31.Reis PA, Salgado MA, Vasconcelos V. Barnacles as biomonitors of metal contamination in coastal waters. Estuar Coast Shelf Sci. 2011;93:269–78.CrossRef
    32.Holland DL, Walker G. The biochemical composition of the cypris larva of the barnacle Balanus balanoides L. J Conseil. 1975;36:162–5.CrossRef
    33.Barnes H, Klepal W, Mitchell BD. The organic and inorganic composition of some cirripede shells. J Exp Mar Biol Ecol. 1976;21:119–27.CrossRef
    34.Shigeno Y, Kondo K, Takemoto K. Functional monomers and polymers, 85. On the adsorption of bromine onto chitosan. Angew Makromol Chem. 1980;90:211–5.CrossRef
    35.Takahashi Y. Binding properties of alginic acid and chitin. J Incl Phenom. 1987;5:525–34.CrossRef
    36.Ehrlich H, Simon P, Carrillo-Cabrera W, Bazhenov VV, Botting JP, Ilan M, et al. Insights into chemistry of biological materials: newly discovered silica-aragonite-chitin biocomposites in demosponges. Chem Mater. 2010;22:1462–71.CrossRef
    37.Walley LJ, Rees EIS. Studies on the larval structure and metamorphosis of Balanus balanoides (L.). Philos T Roy Soc B. 1969;256:237–80.CrossRef
    38.Aldred N, Phang IY, Conlan SL, Clare AS, Vancso GJ. The effects of a serine protease, Alcalase, on the adhesives of barnacle cyprids (Balanus amphitrite). Biofouling. 2008;24:97–107.CrossRef
    39.Burden DK, Barlow DE, Spillmann CM, Orihuela B, Rittschof D, Everett R, et al. Barnacle Balanus amphitrite adheres by a stepwise cementing process. Langmuir. 2012;28:13364–72.CrossRef
    40.Burden DK, Spillmann CM, Everett RK, Barlow DE, Orihuela B, Deschamps JR, et al. Growth and development of the barnacle Amphibalanus amphitrite: time and spatially resolved structure and chemistry of the base plate. Biofouling. 2014;30:799–812.CrossRef
    41.Twining BS, Baines SB, Fisher NS, Maser J, Vogt S, Jacobsen C, et al. Quantifying trace elements in individual aquatic protist cells with a synchrotron X-ray fluorescence microprobe. Anal Chem. 2003;75:3806–16.CrossRef
    42.Schoonjans T, Silversmit G, Vekemans B, Schmitz S, Burghammer M, Riekel C, et al. Fundamental parameter based quantification algorithm for confocal nano-X-ray fluorescence analysis. Spectrochim Acta B. 2012;67:32–42.CrossRef
    43.De Samber B, Silversmit G, De Schamphelaere K, Evens R, Schoonjans T, Vekemans B, et al. Element-to-tissue correlation in biological samples determined by three-dimensional X-ray imaging methods. J Anal At Spectrom. 2010;25:544–53.CrossRef
    44.De Jonge MD, Holzner C, Baines SB, Twining BS, Ignatyev K, Diaz J, et al. Quantitative 3D elemental microtomography of Cyclotella meneghiniana at 400-nm resolution. Proc Natl Acad Sci U S A. 2010;107:15676–80.CrossRef
    45.Perrett D. From ‘protein’ to the beginnings of clinical proteomics. Proteom Clin Appl. 2007;1:720–38.CrossRef
  • 作者单位:Tobias Senkbeil (1) (2)
    Tawheed Mohamed (1) (3) (4)
    Rolf Simon (5)
    David Batchelor (5)
    Alessio Di Fino (6)
    Nick Aldred (6)
    Anthony S. Clare (6)
    Axel Rosenhahn (2)

    1. Institute of Functional Interfaces, KIT Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
    2. Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, Universitätsstr. 150 NC4, 44801, Bochum, Germany
    3. Applied Physical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
    4. Institute of Physics and Technology, International X-ray Optics Lab, National Research Tomsk Polytechnic University (TPU), 30, Lenin ave., Tomsk, 634050, Russia
    5. ANKA Synchrotronstrahlungsquelle, KIT Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
    6. School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Food Science
    Inorganic Chemistry
    Physical Chemistry
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1618-2650
文摘
Barnacles are able to establish stable surface contacts and adhere underwater. While the composition of adult barnacle cement has been intensively studied, far less is known about the composition of the cement of the settlement-stage cypris larva. The main challenge in studying the adhesives used by these larvae is the small quantity of material available for analysis, being on the order of nanograms. In this work, we applied, for the first time, synchrotron radiation-based μ-X-ray fluorescence analysis (SR-μ-XRF) for in vivo and in situ analysis of young barnacles and barnacle cyprids. To obtain biologically relevant information relating to the body tissues, adhesives, and shell of the organisms, an in situ sample environment was developed to allow direct microprobe investigation of hydrated specimens without pretreatment of the samples. In 8-day-old juvenile barnacles (Balanus improvisus), the junctions between the six plates forming the shell wall showed elevated concentrations of calcium, potassium, bromine, strontium, and manganese. Confocal measurements allowed elemental characterization of the adhesive interface of recently attached cyprids (Balanus amphitrite), and substantiated the accumulation of bromine both at the point of initial attachment as well as within the cyprid carapace. In situ measurements of the cyprid cement established the presence of bromine, chlorine, iodine, sulfur, copper, iron, zinc, selenium, and nickel for both species. The previously unrecognized presence of bromine, iron, and selenium in the cyprid permanent adhesive will hopefully inspire further biochemical investigations of the function of these substances.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700