Beneficial effects of silicon on salt and drought tolerance in plants
详细信息    查看全文
  • 作者:Yongxing Zhu (1)
    Haijun Gong (1)
  • 关键词:Environmental stress ; Salinity ; Drought ; Silicon ; Plant ; Tolerance
  • 刊名:Agronomy for Sustainable Development
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:34
  • 期:2
  • 页码:455-472
  • 全文大小:1,019 KB
  • 参考文献:1. Adatia MH, Besford RT (1986) The effects of silicon on cucumber plants grown in recirculating nutrient solution. Ann Bot 58:343鈥?51
    2. Agarie S, Agata W, Kubota F, Kaufman PB (1992) Physiological roles of silicon in photosynthesis and dry matter production in rice plants. Jpn J Crop Sci 60:200鈥?06. doi:10.1626/jcs.61.200 (in Japanese)
    3. Agarie S, Hanaoka N, Ueno O, Miyazaki A, Kubota F, Agata W, Kaufman PB (1998a) Effects of silicon on tolerance to water deficit and heat stress in rice plants ( / Oryza sativa L.), monitored by electrolyte leakage. Plant Prod Sci 1:96鈥?03
    4. Agarie S, Uchida H, Agata W, Kubota F, Kaufman PB (1998b) Effects of silicon on transpiration and leaf conductance in rice plants ( / Oryza sativa L.). Plant Prod Sci 1:89鈥?5
    5. Ahmad R, Zaheer SH, Ismail S (1992) Role of silicon in salt tolerance of wheat ( / Triticum aestivum L.). Plant Sci 85:43鈥?0. doi:10.1016/0168-9452(92)90092-z
    6. Ahmed M, Hassen FU, Khurshid Y (2011a) Does silicon and irrigation have impact on drought tolerance mechanism of sorghum? Agric Water Manag 98:1808鈥?812. doi:10.1016/j.agwat.2011.07.003
    7. Ahmed M, Hassen FU, Qadeer U, Aslam MA (2011b) Silicon application and drought tolerance mechanism of sorghum. Afr J Agric Res 6:594鈥?07. doi:10.5897/ajar10.626
    8. Ahsan N, Renault J, Komatsu S (2009) Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics 9:2602鈥?621. doi:10.1002/pmic.200800935
    9. Al-aghabary K, Zhu ZJ, Shi QH (2004) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J Plant Nutr 27:2101鈥?115. doi:10.1081/lpla-200034641
    10. Ali M (2013) The greenhouse effect. Climate change impacts on plant biomass growth. Springer, Dordrecht, pp 13鈥?7. doi: 10.1007/978-94-007-5370-9
    11. Ali MA, Lee CH, Kim PJ (2008) Effect of silicate fertilizer on reducing methane emission during rice cultivation. Biol Fertil Soils 44:597鈥?04. doi:10.1007/s00374-007-0243-5
    12. An YY, Liang ZS (2013) Drought tolerance of / Periploca sepiumduring seed germination: antioxidant defense and compatible solutes accumulation. Acta Physiol Plant 35:959鈥?67. doi:10.1007/s11738-012-1139-z
    13. Arnon DI, Stout PR (1939) The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol 14:371鈥?75
    14. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206鈥?16. doi:10.1016/j.envexpbot.2005.12.006
    15. Ashraf M, Ahmad A, McNeilly T (2001) Growth and photosynthetic characteristics in pearl millet under water stress and different potassium supply. Photosynthetica 39:389鈥?94. doi:10.1023/a:1015182310754
    16. Ashraf M, Rahmatullah, Afzal M, Ahmed R, Mujeeb F, Sarwar A, Ali L (2010a) Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane ( / Saccharum officinarum L.). Plant Soil 326:381鈥?91. doi:10.1007/s11104-009-0019-9
    17. Ashraf M, Rahmatullah, Ahmad R, Bhatti AS, Afzal M, Sarwar A, Maqsood MA, Kanwal S (2010b) Amelioration of salt stress in sugarcane (Saccharum officinarum L.) by supplying potassium and silicon in hydroponics. Pedosphere 20:153鈥?62. doi:10.1016/s1002-0160(10)60003-3
    18. Balibrea ME, Rus-alvarez AM, Bolarfn MC, P茅rez-alfocea F (1997) Fast changes in soluble carbohydrates and proline contents in tomato seedlings in response to ionic and non ionic iso-osmotic stresses. J Plant Physiol 151:221鈥?26. doi:10.1016/s0176-1617(97)80156-3
    19. Barber SA (1984) Soil nutrient bioavailability: a mechanistic approach. Wiley-Interscience, New York
    20. Bauer P, Elbaum R, Weiss IM (2011) Calcium and silicon mineralization in land plants: transport, structure and function. Plant Sci 180:746鈥?56. doi:10.1016/j.plantsci.2011.01.019
    21. Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431鈥?34. doi:10.1016/s0955-0674(00)00112-5
    22. Bohnert HJ, Shen B (1999) Transformation and compatible solutes. Sci Hortic 78:237鈥?60. doi:10.1016/s0304-4238(98)00195-2
    23. Brunings AM, Datnoff LE, Ma JF, Mitani N, Nagamura Y, Rathinasabapathi B, Kirst M (2009) Differential gene expression of rice in response to silicon and rice blast fungus / Magnaporthe oryzae. Ann Appl Biol 155:161鈥?70. doi:10.1111/j.1744-7348.2009.00347.x
    24. Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Mar猫 C, Tondellia A, Stanca AM (2008) Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crop Res 105:1鈥?4. doi:10.1016/j.fcr.2007.07.004
    25. Chakrabarti N, Mukherji S (2003) Effect of phytohormone pretreatment on nitrogen metabolism in / Vigna radiata under salt stress. Biol Plant 46:63鈥?6. doi:10.1023/a:1022358016487
    26. Chattopadhayay MK, Tiwari BS, Chattopadhayay G, Bose A, Sengupta DN, Ghosh B (2002) Protective role of exogenous polyamines on salinity-stressed rice ( / Oryza sativa) plants. Physiol Plant 116:192鈥?99. doi:10.1034/j.1399-3054.2002.1160208.x
    27. Chen W, Yao XQ, Cai KZ, Chen J (2011) Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol Trace Elem Res 142:67鈥?6. doi:10.1007/s12011-010-8742-x
    28. Chiba Y, Mitani N, Yamaji N, Ma JF (2009) HvLsi1 is a silicon influx transporter in barley. Plant J 57:810鈥?18. doi:10.1111/j.1365-313x.2008.03728.x
    29. Cooke J, Leishman MR (2011) Is plant ecology more siliceous than we realise? Trends Plant Sci 16:61鈥?8. doi:10.1016/j.tplants.2010.10.003
    30. De Vleesschauwer D, Cornelis P, H枚fte M (2006) Redox-active pyocyanin secreted by / Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to / Magnaporthe grisea but enhances / Rhizoctonia solani susceptibility in rice. Mol Plant Microbe Interact 19:1406鈥?419. doi:10.1094/mpmi-19-1406
    31. Detmann KC, Ara煤jo L, Martins SCV, Sanglard LMVP, Reis JV, Detmann E, Rodrigues F脕, Nunes-Nesi A, Fernie AR, DaMatta FA (2012) Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol 196:752鈥?62. doi:10.1111/j.1469-8137.2012.04299.x
    32. Ding TP, Ma GR, Shui MX, Wan DF, Li RH (2005) Silicon isotope study on rice plants from the Zhejiang province, China. Chem Geol 218:41鈥?0. doi:10.1016/j.chemgeo.2005.01.018
    33. Dodd IC, Davies WJ (2004) Hormones and the regulation of water balance. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action, 3rd edn. Kluwer, Dordrecht, pp 519鈥?48
    34. Eneji AE, Inanaga S, Muranaka S, Li J, Hattori T, An P, Tsuji W (2008) Growth and nutrient use in four grasses under drought stress as mediated by silicon fertilizers. J Plant Nutr 31:355鈥?65. doi:10.1080/01904160801894913
    35. Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci U S A 91:11鈥?7
    36. Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer, Sunderland
    37. Faiyue B, Vijayalakshmi C, Nawaz S, Nagato Y, Taketa S, Ichii M, Al-Azzawi MJ, Flowers TJ (2010) Studies on sodium bypass flow in lateral rootless mutants / lrt1 and / lrt2, and crown rootless mutant / crl1 of rice ( / Oryza sativa L.). Plant Cell Environ 33:687鈥?01. doi:10.1111/j.1365-3040.2009.02077.x
    38. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185鈥?12. doi:10.1007/978-90-481-2666-8_12
    39. Fauteux F, R茅mus-Borel W, Menzies JG, B茅langer RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249:1鈥?. doi:10.1016/j.femsle.2005.06.034
    40. Feng YQ (2000) Siliceous fertilizer to become a new fertilizer product in expansion of agriculture in China. J Chem Fert Ind 27(4):9鈥?1, 36. (in Chinese)
    41. Fleck AT, Nye T, Repenning C, Stahl F, Zahn M, Schenk MK (2011) Silicon enhances suberization and lignification in roots of rice ( / Oryza sativa). J Exp Bot 62:2001鈥?011. doi:10.1093/jxb/erq392
    42. Flowers TJ, Hajibagueri MA, Clipson NCW (1986) Halophytes. Q Rev Biol 61:313鈥?37
    43. Fu FF, Akagi T, Yabuki S (2002) Origin of silica particles found in the cortex of / Matteuccia roots. Soil Sci Soc Am J 66:1265鈥?271. doi:10.2136/sssaj2002.1265
    44. Gao X, Zou C, Wang L, Zhang F (2004) Silicon improves water use efficiency in maize plants. J Plant Nutr 27:1457鈥?470. doi:10.1081/pln-200025865
    45. Gao X, Zou C, Wang L, Zhang F (2006) Silicon decreases transpiration rate and conductance from stomata of maize plants. J Plant Nutr 29:1637鈥?647. doi:10.1080/01904160600851494
    46. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909鈥?30. doi:10.1016/j.plaphy.2010.08.016
    47. Gong HJ, Chen KM (2012) The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta Physiol Plant 34:1589鈥?594. doi:10.1007/s11738-012-0954-6
    48. Gong HJ, Chen KM, Chen GC, Wang SM, Zhang CL (2003) Effects of silicon on growth of wheat under drought. J Plant Nutr 26:1055鈥?063. doi:10.1081/pln-120020075
    49. Gong HJ, Zhu XY, Chen KM, Wang S, Zhang CL (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313鈥?21. doi:10.1016/j.plantsci.2005.02.023
    50. Gong HJ, Randall DP, Flowers TJ (2006) Silicon deposition in root reduces sodium uptake in rice ( / Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ 29:1970鈥?979. doi:10.1111/j.1365-3040.2006.01572.x
    51. Gong HJ, Chen KM, Zhao ZG, Chen GC, Zhou WJ (2008) Effects of silicon on defense of wheat against oxidative stress under drought at different develop mental stages. Biol Plant 52:592鈥?96. doi:10.1007/s10535-008-0118-0
    52. Gong HJ, Blackmore D, Clingeleffer P, Sykes S, Jha D, Tester M, Walker R (2011) Contrast in chloride exclusion between two grapevine genotypes and its variation in their hybrid progeny. J Exp Bot 62:989鈥?99. doi:10.1093/jxb/erq326
    53. Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35鈥?5. doi:10.1007/s00726-007-0501-8
    54. Guerrier G (1996) Fluxes of Na+, K+ and Cl-, and osmotic adjustment in / Lycopersicon pimpinellifolium and / L. esculentum during short- and long-term exposures to NaCl. Physiol Plant 97:583鈥?91. doi:10.1111/j.1399-3054.1996.tb00519.x
    55. Gunes A, Ali I, Bagci EG, Pilbeam DJ (2007a) Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant Soil 290:103鈥?14. doi:10.1007/s11104-006-9137-9
    56. Gunes A, Inal A, Bagci EG, Coban S (2007b) Silicon-mediated changes on some physiological and enzymatic parameters symptomatic of oxidative stress in barley grown in sodic-B toxic soil. J Plant Physiol 164:807鈥?11. doi:10.1016/j.jplph.2006.07.011
    57. Gunes A, Pilbeam DJ, Inal A, Coban S (2008) Influence of silicon on sunflower cultivars under drought stress. I: growth, antioxidant mechanisms, and lipid peroxidation. Commun Soil Sci Plant Anal 39:1885鈥?903. doi:10.1080/00103620802134651
    58. Guntzer F, Keller C, Meunier J-D (2012) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32:201鈥?13. doi:10.1007/s13593-011-0039-8
    59. Gupta K, Dey A, Gupta B (2013) Plant polyamines in abiotic stress responses. Acta Physiol Plant 35:2015鈥?036. doi:10.1007/s11738-013-1239-4
    60. Gzik A (1997) Accumulation of proline and pattern of 伪-amino acids in sugar beet plants in response to osmotic, water and salt stress. Environ Exp Bot 36:29鈥?8. doi:10.1016/0098-8472(95)00046-1
    61. Halford NG (2011) The role of plant breeding and biotechnology in meeting the challenge of global warming. In: Carayannis E (ed) Planet earth 2011鈥攇lobal warming challenges and opportunities for policy and practice. ISBN: 978-953-307-733-8, InTech. and-opportunities-for-policy-and-practice/the-role-of-plant-breeding-and-biotechnology-in-meeting-the-challenge-of-global-warming" class="a-plus-plus">http://www.intechopen.com/books/planet-earth-2011-global-warming-challenges-and-opportunities-for-policy-and-practice/the-role-of-plant-breeding-and-biotechnology-in-meeting-the-challenge-of-global-warming
    62. Hashemi A, Abdolzadeh A, Sadeghipour HR (2010) Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, / Brassica napus L. plants. Soil Sci Plant Nutr 56:244鈥?53. doi:10.1111/j.1747-0765.2009.00443.x
    63. Hattori T, Inanaga S, Tanimoto E, Lux A, Luxova M, Sugimoto Y (2003) Silicon-induced changes in viscoelastic properties of sorghum root cell walls. Plant Cell Physiol 44:743鈥?49. doi:10.1093/pcp/pcg090
    64. Hattori T, Inanaga S, Araki H, An P, Morita S, Luxov谩 M, Lux A (2005) Application of silicon enhanced drought tolerance in / Sorghum bicolour. Physiol Plant 123:459鈥?66. doi:10.1111/j.1399-3054.2005.00481.x
    65. Hattori T, Sonobe K, Araki H, Inanaga S, An P, Morita S (2008a) Silicon application by sorghum through the alleviation of stress-induced increase in hydraulic resistance. J Plant Nutr 31:1482鈥?495. doi:10.1080/01904160802208477
    66. Hattori T, Sonobe K, Inanaga S, An P, Morita S (2008b) Effects of silicon on photosynthesis of young cucumber seedlings under osmotic stress. J Plant Nutr 31:1046鈥?058. doi:10.1080/01904160801928380
    67. Heffernan O (2013) The dry facts. Nature 501:S2鈥揝3. doi:10.1038/501S2a
    68. Henriet C, Draye X, Oppitz I, Swennen R, Delvaux B (2006) Effects, distribution and uptake of silicon in banana ( / Musa spp.) under controlled conditions. Plant Soil 287:359鈥?74. doi:10.1007/s11104-006-9085-4
    69. Hohmann-Marriott MF, Blankenship RE (2012) The photosynthetic world. In: Eaton-Rye JJ (ed) Photosynthesis. Springer, Dodrecht, pp 3鈥?2. doi:10.1007/978-94-007-1579-0
    70. Isa M, Bai S, Yokoyama T, Ma JF, Ishibashi Y, Yuasa T, Iwaya-Inoue M (2010) Silicon enhances growth independent of silica deposition in a low-silica rice mutant, / lsi1. Plant Soil 331:361鈥?75. doi:10.1007/s11104-009-0258-9
    71. Jugdaohsingh R, Kinrade SD, Powell JJ (2008) Is there a biochemical role for silicon? Met Ions Biol Med 10:45鈥?5
    72. Karmoker JL, Von Steveninck RFM (1979) The effect of abscisic acid on the uptake and distribution of ions in intact seedlings of / Phaseolus vulgaris cv. Redland Pioneer. Physiol Plant 45:453鈥?59. doi:10.1111/j.1399-3054.1979.tb02613.x
    73. Kaya C, Tuna L, Higgs D (2006) Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. J Plant Nutr 29:1469鈥?480. doi:10.1080/01904160600837238
    74. Kerstiens G (1996) Cuticular water permeability and its physiological significance. J Exp Bot 47:1813鈥?832. doi:10.1093/jxb/47.12.1813
    75. Khan MA, Ungar IA, Showalter AM (2000) Effects of sodium chloride treatments on growth and ion accumulation of the halophyte / Haloxylon recurvum. Commun Soil Sci Plant Anal 31:2763鈥?774. doi:10.1080/00103620009370625
    76. Kim YH, Khan AL, Hamayun M, Kang SM, Beom YJ, Lee IJ (2011) Influence of short-term silicon application on endogenous physiohormonal levels of / Oryza sativa L. under wounding stress. Biol Trace Elem Res 144:1175鈥?185. doi:10.1007/s12011-011-9047-4
    77. Kim YH, Khan AL, Waqas M, Shim JK, Kim DH, Lee KY, Lee IJ (2013) Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. J Plant Growth Regul. doi:10.1007/s00344-013-9356-2
    78. Kotula L, Steudle E (2008) Measurements of oxygen permeability coefficients of rice ( / Oryza sativa L.) roots using a new perfusion technique. J Exp Bot 60:567鈥?80. doi:10.1093/jxb/ern300
    79. Krishnamurthy P, Ranathunge K, Franke R, Prakash HS, Schreiber L, Mathew MK (2009) The role of root apoplastic transport barriers in salt tolerance of rice ( / Oryza sativa L.). Planta 230:119鈥?34. doi:10.1007/s00425-009-0930-6
    80. Kumar AP, Bandhu AD (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324鈥?49. doi:10.1016/j.ecoenv.2004.06.010
    81. Lee SK, Sohn EY, Hamayun M, Yoon JY, Lee IJ (2010) Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agrofor Syst 80:333鈥?40. doi:10.1007/s10457-010-9299-6
    82. Liang YC (1998) Effects of Si on leaf ultrastructure, chlorophyll content and photosynthetic activity in barley under salt stress. Pedosphere 8:289鈥?96
    83. Liang YC (1999) Effects of silicon on enzyme activity, and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209:217鈥?24. doi:10.1023/a:1004526604913
    84. Liang YC, Ding RX (2002) Influence of silicon on microdistribution of mineral ions in roots of salt-stressed barley as associated with salt tolerance in plants. Sci China Ser C 45:298鈥?08. doi:10.1360/02yc9033
    85. Liang YC, Shen QR, Shen ZG, Ma TS (1996) Effects of silicon on salinity tolerance of two barley cultivars. J Plant Nutr 19:173鈥?83. doi:10.1080/01904169609365115
    86. Liang YC, Chen Q, Liu Q, Zhang WH, Ding RX (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley ( / Hordeum vulgare L.). J Plant Physiol 160:1157鈥?164. doi:10.1078/0176-1617-01065
    87. Liang YC, Si J, R枚mheld V (2005a) Silicon uptake and transport is an active process in / Cucumis sativus L. New Phytol 167:797鈥?04. doi:10.1111/j.1469-8137.2005.01463.x
    88. Liang YC, Zhang WH, Chen Q, Ding RX (2005b) Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley ( / Hordeum vulgare L.). Environ Exp Bot 53:29鈥?7. doi:10.1016/j.envexpbot.2004.02.010
    89. Liang YC, Hua HX, Zhu Y-G, Zhang J, Cheng CM, R枚mheld V (2006a) Importance of plant species and external silicon concentration to active silicon uptake and transport. New Phytol 172:63鈥?2. doi:10.1111/j.1469-8137.2006.01797.x
    90. Liang YC, Zhang WH, Chen Q, Liu YL, Ding RX (2006b) Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley ( / Hordeum vulgare L.). Environ Exp Bot 57:212鈥?19. doi:10.1016/j.envexpbot.2005.05.012
    91. Liang YC, Sun WC, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422鈥?28. doi:10.1016/j.envpol.2006.06.008
    92. Lin YC, Zhang D, Xiao YM (2010) Development of water saving cropping system on potato in northwest regions in China. Chin Agri Sci Bull 26:99鈥?03 (in Chinese with English abstract)
    93. Liu YX, Xu XZ (2007) Effects of silicon on polyamine types and forms in leaf of / Zizyphus jujuba cv. Jinsi-xiaozao under salt stress. J Nanjing For Univ 31:27鈥?2. doi:10.3969/j.jssn.1000-2006.2007.04.006 (in Chinese with English abstract)
    94. Liu WG, Wang LQ, Bai YH (2003) Research progress in the beneficial elements鈥攕ilicon for plants. Acta Bot Boreali Occidentalia Sin 23:2248鈥?253 (in Chinese with English abstract)
    95. Lobato AKS, Coimbra GK, Neto MAM, Costa RCL, Filho BGS, Neto CFO, Luz LM, Barreto AGT, Pereira BWF, Alves GAR, Monteiro BS, Marochio CA (2009) Protective action of silicon on water relations and photosynthetic pigments in pepper plants induced to water deficit. Res J Biol Sci 4:617鈥?23. doi:10.3923/rjbsci.2009.617.623
    96. Ma JF (2010) Si transporters in higher plant. In: Jhon PT, Bienert PG (eds) MIPs and their role in the exchange of materials. Landes Bioscience, Texas, pp 99鈥?09
    97. Ma JF, Takahashi E (1990) Effect of silicon on the growth and phosphorus uptake of rice. Plant Soil 126:115鈥?19. doi:10.1007/bf00041376
    98. Ma JF, Takahashi E (2002) Soil, fertiliser, and plant silicon research in Janpan. Elsevier, Amsterdam
    99. Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392鈥?97. doi:10.1016/j.tplants.2006.06.007
    100. Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049鈥?057. doi:10.1007/s00018-008-7580-x
    101. Ma JF, Miyake Y, Takahashi E (2001) Silicon as a beneficial element for crop plants. In: Datonoff L, Snyder G, Korndorfer G (eds) Silicon in agriculture. Elsevier Science, New York, pp 17鈥?9. doi:10.1016/s0928-3420(01)80006-9
    102. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688鈥?91. doi:10.1038/nature04590
    103. Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209鈥?13. doi:10.1038/nature05964
    104. Ma CH, Yang L, Hu SY (2009) Silicon supplying ability of soil and advances of siliscon fetilizer research. Hubei Agri Sci 4:987鈥?89. doi:10.3969/j.issn.0439-8114.2009.04.066 (in Chinese with English abstract)
    105. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139鈥?58. doi:10.1016/j.abb.2005.10.018
    106. Maksimovi膰 JD, Bogdanovi膰 J, Maksimovi膰 V, Nikolic M (2007) Silicon modulates the metabolism and utilization of phenolic compounds in cucumber ( / Cucumis sativus L.) grown at excess manganese. J Plant Nutr Soil Sci 170:739鈥?44. doi:10.1002/jpln.200700101
    107. Mali M, Aery NC (2008) Influence of silicon on growth, relative water contents and uptake of silicon, calcium and potassium in wheat grown in nutrient solution. J Plant Nutr 31:1867鈥?876. doi:10.1080/01904160802402666
    108. Mansour MMF (1998) Protection of plasma membrane of onion epidermal cells by glycinebetaine and proline against NaCl stress. Plant Physiol Biochem 36:767鈥?72. doi:10.1016/s0981-9428(98)80028-4
    109. Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul 34:135鈥?48. doi:10.1023/a:1013343106574
    110. Mateos-Naranjo E, Andrades-Moreno L, Davy AJ (2013) Silicon alleviates deleterious effects of high salinity on the halophytic grass / Spartina densiflora. Plant Physiol Biochem 63:115鈥?21. doi:10.1016/j.plaphy.2012.11.015
    111. Matoh T, Murata S, Takahashi E (1991) Effect of silicate application on photosynthesis of rice plants. Jpn J Soil Sci Plant Nutr 62:248鈥?51 (in Japanese)
    112. Maurel C, Verdoucq L, Luu DT, Santon V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595鈥?24. doi:10.1146/annurev.arplant.59.032607.092734
    113. Mazumdar J (2011) Phytoliths of pteridophytes. S Afr J Bot 77:10鈥?9. doi:10.1016/j.sajb.2010.07.020
    114. Meyer S, Genty S (1998) Mapping intercellular CO2 mole fraction (Ci) in / Rosa rubiginosa leaves fed with abscisic acid by using chlorophyll fluorescence imaging: significance of Ci estimated from leaf gas exchange. Plant Physiol 116:947鈥?57. doi:10.1104/pp.116.3.947
    115. Millar AA, Duysen ME, Wilkerson GE (1968) Internal water balance of barley under soil moisture stress. Plant Physiol 43:968鈥?72. doi:10.1104/pp.43.6.968
    116. Ming DF, Pei ZF, Naeem MS, Gong HJ, Zhou WJ (2012) Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment. J Agron Crop Sci 198:14鈥?6. doi:10.1111/j.1439-037X.2011.00486.x
    117. Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56:1255鈥?261. doi:10.1093/jxb/eri121
    118. Mitani N, Ma JF, Iwashita T (2005) Identification of the silicon form in xylem sap of rice ( / Oryza sativa L.). Plant Cell Physiol 46:279鈥?83. doi:10.1093/pcp/pci018
    119. Mitani N, Chiba Y, Yamaji N, Ma JF (2009a) Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell 21:2133鈥?142. doi:10.1105/tpc.109.067884
    120. Mitani N, Yamaji N, Ma JF (2009b) Identification of maize silicon influx transporters. Plant Cell Physiol 50:5鈥?2. doi:10.1093/pcp/pcn110
    121. Mitani N, Yamaji N, Ago Y, Iwasaki K, Ma JF (2011) Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. Plant J 66:231鈥?40. doi:10.1111/j.1365-313x.2011.04483.x
    122. Miyake Y (1993) Silica in soils and plants. Sci Rep Fac Agr Okayama Univ Jpn 81:61鈥?9
    123. Montpetit J, Vivancos J, Mitani-Ueno N, Yamaji N, R茅mus-Borel W, Belzile F, Ma JF, B茅langer RR (2012) Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Mol Biol 79:35鈥?6. doi:10.1007/s11103-012-9892-3
    124. Moussa HR (2006) Influence of exogenous application of silicon on physiological response of salt-stressed maize ( / Zea mays L.). Int J Agri Biol 8:293鈥?97
    125. Nayyar H, Walia DP (2003) Water stress induced proline accumulation in contrasting wheat genotypes as affected by calcium and abscisic acid. Biol Plant 46:275鈥?79. doi:10.1023/a:1022867030790
    126. Nikolic M, Nikolic N, Liang Y, Kirkby EA, R枚mheld V (2007) Germanium-68 as an adequate tracer for silicon transport in plants. Characterization of silicon uptake in different crop species. Plant Physiol 143:495鈥?03. doi:10.1104/pp.106.090845
    127. Nwugo CC, Huerta AJ (2011) The effect of silicon on the leaf proteome of rice ( / Oryza sativa L.) plants under cadmium-stress. J Proteome Res 10:518鈥?28. doi:10.1021/pr100716h
    128. Ortega L, Fry SC, Taleisnik E (2006) Why are / Chloris gayana leaves shorter in salt-affected plants? Analyses in the elongation zone. J Exp Bot 57:3945鈥?952. doi:10.1093/jxb/erl168
    129. Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ (2010) Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat ( / Triticum aestivum L.) seedlings. J Plant Growth Regul 29:106鈥?15. doi:10.1007/s00344-009-9120-9
    130. Pisinaras V, Tsihrintzis VA, Petalas C, Ouzounis K (2010) Soil salinization in the agricultural lands of Rhodope District, northeastern Greece. Environ Monit Assess 166:79鈥?4. doi:10.1007/s10661-009-0986-6
    131. Rasool S, Hameed A, Azooz MM, Muneeb-u-Rehman, Siddiqi TO, Parvaiz Ahmad P (2013) Salt stress: causes, types and responses of plants. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 1鈥?4. doi:10.1007/978-1-4614-4747-4_1
    132. Raven JA (2001) Silicon transport at the cell and tissue level. In: Datnoff LE, Snyder GH, Kornd枚rfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam, pp 41鈥?5. doi:10.1016/s0928-3420(01)80007-0
    133. Reddy AR, Chaitanya KV, Vivekanandanb M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189鈥?202. doi:10.1016/j.jplph.2004.01.013
    134. Richmond KE, Sussman M (2003) Got silicon? The non-essential beneficial plant nutrient. Curr Opin Plant Biol 6:268鈥?72. doi:10.1016/s1369-5266(03)00041-4
    135. Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847鈥?55. doi:10.1016/j.jplph.2005.05.010
    136. Rothamsted Research (2013) Rothamsted research's classical experiment 鈥淗oos barley鈥攕tarted in 1852鈥? http://www.rothamsted.ac.uk/Content-Section=Resources&Page=ClassicalExperiments.html. accessed 19 September 2013
    137. Santa-Gruz A, Acosta M, P茅rez-Alfocea F, Bolarin MC (1997) Changes in free polyamine levels induced by salt stress in leaves of cultivated and wild tomato species. Physiol Plant 101:341鈥?46. doi:10.1111/j.1399-3054.1997.tb01006.x
    138. Saqib M, Z枚rb C, Schubert S (2008) Silicon-mediated improvement in the salt resistance of wheat ( / Triticum aestivum) results from increased sodium exclusion and resistance to oxidative stress. Funct Plant Biol 35:633鈥?39. doi:10.1071/fp08100
    139. Savant NK, Datnoff LE, Snyder GH (1997) Depletion of plant-available silicon in soils: a possible cause of declining rice yields. Commun Soil Sci Plant Anal 28:1245鈥?252. doi:10.1080/00103629709369870
    140. Savvas D, Giotis D, Chatzieustratiou E, Bakea M, Patakioutas G (2009) Silicon supply in soilless cultivations of zucchini alleviates stress induced by salinity and powdery mildew infections. Environ Exp Bot 65:11鈥?7. doi:10.1016/j.envexpbot.2008.07.004
    141. Seckin B, Sekmen AH, T眉rkan 陌 (2009) An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. J Plant Growth Regul 28:12鈥?0. doi:10.1007/s00344-008-9068-1
    142. Shahzad M, Z枚rb C, Geilfus CM, M眉hling KH (2013) Apoplastic Na+ in / Vicia faba leaves rises after short-term salt stress and is remedied by silicon. J Agron Crop Sci 199:161鈥?70. doi:10.1111/jac.12003
    143. Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ exchanger. Proc Natl Acad Sci U S A 97:6896鈥?901. doi:10.1073/pnas.120170197
    144. Shi Y, Wang YC, Flowers TJ, Gong HJ (2013) Silicon decreases chloride transport in rice ( / Oryza sativa L.) in saline conditions. J Plant Physiol 170:847鈥?53. doi:10.1016/j.jplph.2013.01.018
    145. Siddique MRB, Hamid A, Islam MS (2000) Drought stress effects on water relations of wheat. Bot Bull Acad Sin 41:35鈥?9
    146. Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes鈥攁 review. J Plant Nutr Soil Sci 169:310鈥?29. doi:10.1002/jpln.200521981
    147. Sonobe K, Hattori T, An P, Tsuji W, Eneji AE, Kobayashi S, Kawamura Y, Tanaka K, Inanaga S (2011) Effect of silicon application on sorghum root responses to water stress. J Plant Nutr 34:71鈥?2. doi:10.1080/01904167.2011.531360
    148. Soylemezoglu G, Demir K, Inal A, Gunes A (2009) Effect of silicon on antioxidant and stomatal response of two grapevine ( / Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Sci Hortic Amst 123:240鈥?46. doi:10.1016/j.scienta.2009.09.005
    149. Sutka M, Li G, Boudet J, Boursiac Y, Doumas P, Maurel C (2011) Natural variation of root hydraulics in / Arabidopsis grown in normal and salt-stressed conditions. Plant Physiol 155:1264鈥?276. doi:10.1104/pp. 110.163113
    150. Takahashi E, Hino K (1978) Silica uptake by plant with special reference to the forms of dissolved silica. Jpn J Soil Sci Manure 49:357鈥?60
    151. Tuna AL, Kaya C, Higgs D, Murillo-Amador B, Aydemir S, Girgin AR (2008) Silicon improves salinity tolerance in wheat plants. Environ Exp Bot 62:10鈥?6. doi:10.1016/j.envexpbot.2007.06.006
    152. Van Bockhaven J, De Vleesschauwer D, H枚fte M (2013) Towards establishing broad-spectrum disease resistance in plants: silicon leads the way. J Exp Bot 64:1281鈥?293. doi:10.1093/jxb/ers329
    153. Wang XS, Han JG (2007) Effects of NaCl and silicon on ion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Soil Sci Plant Nutr 53:278鈥?85. doi:10.1111/j.1747-0765.2007.00135.x
    154. Wang Y, Mopper S, Hasenstein KH (2001) Effects of salinity on endogenous ABA, IAA, JA, and SA in / Iris hexagona. J Chem Ecol 27:327鈥?42. doi:10.1023/a:1005632506230
    155. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57鈥?3. doi:10.1038/nrg2484
    156. Watanabe S, Kojima K, Ide Y, Sasaki S (2000) Effects of saline and osmotic stress on proline and sugar accumulation in / Populus euphratica in vitro. Plant Cell Tissue Organ 63:199鈥?06. doi:10.1023/a:1010619503680
    157. Whiteman PC (1965) Control of carbon dioxide and water vapour exchange between plantand atmosphere. Dissertation, Hebrew University, Jerusalem
    158. Wong YC, Heits A, Ville DJ (1972) Foliar symptoms of silicon deficiency in the sugarcane plant. Proc Cong Int Soc Sugarcane Technol 14:766鈥?76
    159. Xiong J, Zhang L, Fu GF, Yang YJ, Zhu C, Tao LX (2012) Drought-induced proline accumulation is uninvolved with increased nitric oxide, which alleviates drought stress by decreasing transpiration in rice. J Plant Res 125:155鈥?64. doi:10.1007/s10265-011-0417-y
    160. Yamaji N, Ma JF (2009) A transporter at the node responsible for intervascular transfer of silicon in rice. Plant Cell 21:2878鈥?883. doi:10.1105/tpc.109.069831
    161. Yamaji N, Mitani N, Ma JF (2008) A transporter regulating silicon distribution in rice shoots. Plant Cell 20:1381鈥?389. doi:10.1105/tpc.108.059311
    162. Yamaji N, Chiba Y, Mitani-Ueno N, Ma JF (2012) Functional characterization of a silicon transporter gene implicated in silicon distribution in barley. Plant Physiol 160:1491鈥?497. doi:10.1104/pp. 112.204578
    163. Ye T, Shi PJ, Wang JA, Liu LY, Fan YD, Hu JF (2012) China's drought disaster risk management: perspective of severe droughts in 2009鈥?010. Int J Disaster Risk Sci 3:84鈥?7. doi:10.1007/s13753-012-0009-z
    164. Yin LN, Wang SW, Li JY, Tanaka K, Oka M (2013) Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of / Sorghum bicolor. Acta Physiol Plant. doi:10.1007/s11738-013-1343-5
    165. Yoshida S (1965) Chemical aspect of silicon in physiology of the rice plant. Bull Natl Agric Sci B 15:1鈥?8
    166. Yue Y, Zhang M, Zhang JC, Duan LS, Li ZH (2012) SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio. J Plant Physiol 169:255鈥?61. doi:10.1016/j.jplph.2011.10.007
    167. Zapata PJ, Serrano M, Pretel MT, Amor枚s A, Botella MA (2004) Polyamines and ethylene changes during germination of different plant species under salinity. Plant Sci 167:781鈥?88. doi:10.1016/j.plantsci.2004.05.014
    168. Zargar SM, Nazir M, Agarwal GK, Rakwal R (2011) OMICS based strategies for efficient accumulation of silicon in rice to enhance its tolerance against environmental stresses. Mol Plant Breed 2:98鈥?00. doi:10.5376/mpb.2011.02.0014
    169. Zhang F, Liang YC, He WL, Zhao X, Zhang LX (2004) Effects of salinity on growth and compatible solutes of callus induced from / Populus euphratica. In Vitro Cell Dev-Pl 40:491鈥?94. doi:10.1079/IVP2004546
    170. Zhou CX, Zhang JY, Li BX (2006) Current status and developing prospect of silicate fertilizer. J Chem Ind Eng 27(6):48鈥?3 (in Chinese)
    171. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66鈥?1. doi:10.1016/s1360-1385(00)01838-0
    172. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247鈥?73. doi:10.1146/annurev.arplant.53.091401.143329
    173. Zhu ZJ, Wei GQ, Li J, Qian QQ, Yu JP (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber ( / Cucumis sativus L.). Plant Sci 167:527鈥?33. doi:10.1016/j.plantsci.2004.04.020
    174. Zushi K, Matsuzoe N, Kitano M (2009) Developmental and tissue-specific changes in oxidative parameters and antioxidant systems in tomato fruits grown under salt stress. Sci Hortic 122:362鈥?68. doi:10.1016/j.scienta.2009.06.001
  • 作者单位:Yongxing Zhu (1)
    Haijun Gong (1)

    1. College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People鈥檚 Republic of China
  • ISSN:1773-0155
文摘
Soil salinity and drought are major abiotic factors that limit crop growth and productivity worldwide. Indeed, soil salinity and drought disrupt the cellular ionic and osmotic balance. Although silicon (Si) is generally considered nonessential for plant growth and developments, Si uptake by plants can alleviate both biotic and abiotic stresses. Silicon application could therefore improve crop production under adverse climate and soil conditions. Several reports have reviewed the benefits of silicon application on crop growth, but the mechanisms of silicon action have not been systematically discussed. Here, we review recent advances on silicon uptake, transport, and accumulation in plants and how silicon alleviates salinity toxicity and drought stress. The major points are the following: (1) both passive and active silicon uptake may coexist in plants; (2) although silicon transporters have been identified in some plants, more silicon transporters remain to be identified, and the process of silicon transport needs further clarification; (3) the mechanisms for silicon-mediated tolerance of salinity and drought have been extensively investigated at both physiological and biochemical levels. The physiological aspects include increasing water uptake by roots, maintaining nutrient balance, decreasing water loss from leaves, and promoting photosynthetic rate. At the biochemical level, silicon may improve antioxidant defense abilities by increasing the activities of antioxidant enzymes and the contents of non enzymatic antioxidants; silicon may also contribute to osmotic adjustment and increase photosynthetic enzymatic activities; and (4) silicon can regulate the levels of endogenous plant hormones under stress conditions, whereas silicon involvement in signaling and regulation of gene expression related to increasing stress tolerance remains to be explored.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700