Tropospheric delay determination by Kalman filtering VLBI data
详细信息    查看全文
  • 作者:Benedikt Soja ; Tobias Nilsson ; Maria Karbon ; Florian Zus…
  • 关键词:Geodesy ; VLBI ; Troposphere ; Zenith wet delays ; Kalman filter ; Stochastic modelling
  • 刊名:Earth, Planets and Space
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:67
  • 期:1
  • 全文大小:4239KB
  • 参考文献:Allan, DW (1966) Statistics of atomic frequency standards. Proc IEEE 54(2): 221-30.CrossRef
    Altamimi, Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geodesy 85(8): 457-73. doi:10.-007/?s00190-011-0444-4 .CrossRef
    B?hm, J, B?hm S, Nilsson T, Pany A, Plank L, Spicakova H, Teke K, Schuh H (2012) The new Vienna VLBI Software VieVS. In: Kenyon S, Pacino MC, Marti U (eds)Proceedings of IAG Scientific Assembly 2009. International Association of Geodesy Symposia, 1007-011.. Springer, Berlin Heidelberg. doi:10.-007/-78-3-642-20338-1_-26 .
    B?hm, J, Urquhart L, Steigenberger P, Heinkelmann R, Nafisi V, Schuh H (2013) A priori gradients in the analysis of space geodetic observations. In: Altamimi Z Collilieux X (eds)Reference Frames for Applications in Geosciences. International Association of Geodesy Symposia, 105-09.. Springer, Berlin Heidelberg. doi:10.-007/-78-3-642-32998-2_-7 .CrossRef
    B?hm, J, Schuh H (2004) Vienna mapping functions in VLBI analyses. Geophys Res Lett 31. doi:10.-029/-003GL018984 .
    Davis, JL, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20(6): 1593-607. doi:10.-029/?RS020i006p01593 .CrossRef
    Deng, Z, Gendt G, Sch?ne T (2015) Status of the tide gauge data reprocessing at GFZ. In: Willis P (ed)Proceedings of IAG Scientific Assembly 2013. International Association of Geodesy Symposia.. Springer, Berlin Heidelberg. in press.
    Dick, G, Gendt G, Reigber C (2000) Operational water vapor estimation in a dense German network. In: Gowey K, Neilan R, Moore A (eds)Proceedings IGS Analysis Center Workshop. IGS 1999 Technical Reports, 375-84.. Jet Propul. Lab., Pasadena, Calif.
    Dick, G, Gendt G, Reigber C (2001) First experience with near real-time water vapor estimation in a German GPS network. J Atmospheric Solar-Terrestrial Phys 63(12): 1295-304. doi:10.-016/?S1364-6826(00)00248-0 .CrossRef
    Elgered, G (1993) Tropospheric radio-path delay from ground-based microwave radiometry. In: Janssen M (ed)Atmospheric Remote Sensing by Microwave Radiometry, 215-58.. John Wiley, New York.
    Elgered, G, Jarlemark POJ (1998) Ground-based microwave radiometry and long-term observations of atmospheric water vapor. Radio Sci 33(3): 707-17. doi:10.-029/-8RS00488 .CrossRef
    Emardson, TR, Jarlemark POJ (1999) Atmospheric modelling in GPS analysis and its effect on the estimated geodetic parameters. J Geodesy 73(6): 322-31. doi:10.-007/?s001900050249 .CrossRef
    Fey, AL, Gordon D, Jacobs CS (eds)2009. The second realization of the International Celestial Reference Frame by very long baseline interferometry. IERS Technical Note 35, Frankfurt am Main: Verlag des Bundesamtes für Kartographie und Geod?sie.
    Gelb, A (1974) Applied optimal estimation. The MIT Press, Cambridge.
    Gendt, G, Dick G, S?hne W (1999) GFZ analysis center of IGS -Annual report 1998. In: Gowey K, Neilan R, Moore A (eds)Analysis Center Reports. IGS 1998 Technical Reports, 79-7.. Jet Propul. Lab., Pasadena, Calif.
    Gendt, G, Dick G, Reigber C, Tomassini M, Liu Y, Ramatschi M (2004) Near real time GPS water vapor monitoring for numerical weather prediction in Germany. J Meteorol Soc Jpn 82(1B): 361-70.CrossRef
    Gross, RS (2000) Combinations of Earth-orientation measurements: SPACE97, COMB97, and POLE97. J Geodesy 73(12): 627-37. doi:10.-007/?s001900050001 .CrossRef
    Gross, RS, Eubanks TM, Steppe JA, Freedman AP, Dickey JO, Runge TF (1998) A Kalman-filter-based approach to combining independent Earth-orientation series. J Geodesy 72(4): 215-35. doi:10.-007/?s001900050162 .CrossRef
    Hase, H, Behrend D, Ma C, Petrachenko B, Schuh H, Whitney A (2012) The emerging VGOS network of the IVS. In: Behrend D Baver KD (eds)IVS 2012 General Meeting Proceedings, NASA/CP-2012-217504, 8-2. http://?ivscc.?gsfc.?nasa.?gov/?publications/?gm2012/?hase.?pdf .
    Heinkelmann, R, B?hm J, Schuh H, Bolotin S, Engelhardt G, MacMillan DS, Negusini M, Skurikhina E, Tesmer V, Titov O (2007) Combination of long time-series of troposphere zenith delays observed by VLBI. J Geodesy 81(6-8): 483-01. doi:10.-007/?s00190-007-0147-z .CrossRef
    Heinkelmann, R, B?hm J, Bolotin S, Engelhardt G, Haas R, Lanotte R, MacMillan DS, Negusini M, Skurikhina E, Titov O, Schuh H (2011) VLBI-derived troposphere parameters during CONT08. J Geodesy 85(7): 377-93. doi:10.-007/?s00190-011-0459-x .CrossRef
    Herring, TA, Davis JL, Shapiro II (1990) Geodesy by radio interferometry: the application of Kalman Filtering to the analysis of very long baseline interferometry data. J Geophys Res Solid Earth 95(B8): 12561-2581. doi:10.-029/?JB095iB08p12561 .CrossRef
    Hopfield, HS (1969) Two-quartic tropospheric refractivity profile for correcting satellite data. J Geophys Res 74(18): 4487-499. doi:10.-029/?JC074i018p04487 .CrossRef
    Peti
  • 作者单位:Benedikt Soja (1)
    Tobias Nilsson (1)
    Maria Karbon (1)
    Florian Zus (1)
    Galina Dick (1)
    Zhiguo Deng (1)
    Jens Wickert (1)
    Robert Heinkelmann (1)
    Harald Schuh (1)

    1. GFZ, German Research Centre for Geosciences, Telegrafenberg, D-14473, Potsdam, Germany
  • 刊物类别:Earth Sciences, general; Geology; Geophysics/Geodesy;
  • 刊物主题:Earth Sciences, general; Geology; Geophysics/Geodesy;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1880-5981
文摘
The troposphere is one of the most important error sources for space geodetic techniques relying on radio signals. Since it is not possible to model the wet part of the tropospheric delay with sufficient accuracy, it needs to be estimated from the observational data. In the analysis of very long baseline interferometry (VLBI) data, the parameter estimation is routinely performed using a least squares adjustment. In this paper, we investigate the application of a Kalman filter for parameter estimation, specifically focusing on the tropospheric delays. The main advantages of a Kalman filter are its real-time capability and stochastic approach. We focused on the latter and derived stochastic models for VLBI zenith wet delays, taking into account temporal and location-based differences. Compared to a static noise model, the quality of station coordinates, also estimated in the Kalman filter, increased as a result. In terms of baseline length and station coordinate repeatabilities, this improvement amounted to 2.3 %. Additionally, we compared the Kalman filter and least squares results for VLBI with zenith wet delays derived from GPS (Global Positioning System), water vapor radiometers, and ray tracing in numerical weather models. The agreement of the Kalman filter VLBI solution with respect to water vapor radiometer data was larger than that of the least squares solution by 6-5 %. Our investigations are based on selected VLBI data (CONT campaigns) that are closest to how future VLBI infrastructure is designed to operate. With the aim for continuous and near real-time parameter estimation and the promising results which we have achieved in this study, we expect Kalman filtering to grow in importance in VLBI analysis. Keywords Geodesy VLBI Troposphere Zenith wet delays Kalman filter Stochastic modelling

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700