Waterspouts in the Eastern Adriatic from 2001 to 2013
详细信息    查看全文
  • 作者:Tanja Renko ; Josipa Kuzmić ; Vinko Šoljan ; Nataša Strelec Mahović
  • 关键词:Waterspouts ; Adriatic Sea ; Preliminary climatology ; Spatial and temporal distribution ; Thermodynamic conditions
  • 刊名:Natural Hazards
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:82
  • 期:1
  • 页码:441-470
  • 全文大小:3,207 KB
  • 参考文献:American Meteorological Society (2015) Waterspout. glossary of meteorology. Available online at http://​glossary.​ametsoc.​org/​wiki/​climatology
    Betz HD, Schmidt K, Laroche P, Blanchet P, Oettinger WP, Defer E, Dzievit Z, Konarski J (2009) LINET—an international lightning detection network in Europe. Atmos Res 91:564–573CrossRef
    Bošković R (1749) Sopra il turbine che la notte tra gli XI, e XII Giugno del MDCCXLIX daneggiò una gran parte di Roma dissertazione, Rome
    Bunkers MJ, Klimowski BA, Zeitler JW, Thompson RL, Weisman ML (2000) Predicting supercell motion using a new hodograph technique. Weather Forecast 15:61–79CrossRef
    Craven JP, Brooks HE, Hart JA (2002) Baseline climatology of sounding derived parameters associated with deep, moist convection. Preprints. In: 21st conference on severe local storms. American Meteorological Society, San Antonio, Texas, pp 643–646
    Darkow G L, Fowler MG (1971) Tornado proximity wind sounding analysis. Preprints. In: Seventh conference on severe local storms, Kansas City, MO. Am Meteor Soc 148–151
    Doswell CA III (2001) Severe convective storms-an overview. In: Severe convective storms. Meteor Monogr AMS Monograph 28:1–26
    Doswell CA III, Evans JS (2003) Proximity sounding analysis for derechos and supercells: an assessment of similarities and differences. Atmos Res 67–68:117–133CrossRef
    Doswell CA III, Rasmussen EN (1994) The effect of neglecting the virtual temperature correction on CAPE calculations. Weather Forecast 9:625–629CrossRef
    Dotzek N (2003) An updated estimate of tornado occurence in Europe. Atmos Res 67–68:153–161CrossRef
    Galway JG (1956) The lifted index as a predictor of latent instability. Bull Am Meteor Soc 43:528–529
    Gaya M, Homar V, Romero R, Camis C (2001) Tornadoes and waterspouts in the Balearic Islands: phenomena and environmental characterization. Atmos Res 56:253–267CrossRef
    Gaya M, Llasat MC, Arus J (2011) Tornadoes and waterspouts in Catalonia (1950–2009). Nat Hazards Earth Syst Sci 11:1875–1883CrossRef
    Giaiotti DB, Giovannoni M, Pucillo A, Stel F (2007) The climatology of tornadoes and waterspouts in Italy. Atmos Res 83:534–541CrossRef
    Golden JH (1971) Waterspouts and tornadoes over South Florida. Mon Weather Rev 99:146–154CrossRef
    Golden JH (1974a) The life cycle of Florida Keys’ waterspouts. I. J Appl Meteor 13:676–692CrossRef
    Golden JH (1974b) Scale-interaction implications for waterspout life cycle II. J Appl Meteorol 13:676–692CrossRef
    Golden JH (1977) An assessment of waterspout frequencies along the United States east and gulf coasts. J Appl Meteorol 16:231–236CrossRef
    Groenemeijer PH, van Delden A (2007) Sounding-derived parameters associated with large hail and tornadoes in the Netherlands. Atmos Res 83:473–487CrossRef
    Höller H, Betz HD, Schmidt K, Calheiros RV, May P, Houngninou E, Scialom G (2009) Lightning characteristics observed by a VLF/LF lightning detection network (LINET) in Brazil, Australia, Africa and Germany. Atmos Chem Phys 9:7795–7824CrossRef
    Ivančan Picek B, Jurčec V (2005) Pijavice na Jadranu njihova pojava u razdoblju 2000–2003. godine. Jadranska Meteorologija 28–34
    Ivančan Picek B, Britvić S, Trošić Ž, Tutiš V (1995) Pojava pijavice kod Bibinja 18. kolovoza 1994. Izvanredne meteorološke i hidrološke prilike u Hrvatskoj 18:41–51
    Katarzyna S (2013) The influence of atmospheric circulation on the occurrence of hail in the North German Lowlands. Theor Appl Climatol 112:363–373CrossRef
    Keul AG, Sioutas MV, Szilagyi W (2009) Prognosis of central-eastern Mediterranean waterspouts. Atmos Res 93:426–436CrossRef
    Lamb HH (1950) Types and spells of weather around the year in the British Isles. Q J R Meteorol Soc 76:393–438CrossRef
    Lund IA (1963) Map-pattern classification by statistical methods. J Appl Meteorol 2:56–65CrossRef
    Manzato A (2007) The 6 h climatology of thunderstorms and rainfalls in the Friuli Venezia Giulia Plain. Atmos Res 83:336–348CrossRef
    Manzato A, Morgan GM (2003) Evaluating the sounding instability with the lifted parcel theory. Atmos Res 67–68:455–473CrossRef
    Marsh PT, Hart JA (2012) SHARPPY: a Python implementation of the Skew-T/Hodograph Analysis and Research Program. In: 2nd symposium on advances in modeling and analysis using Python. New Orleans, LA, Am Meteorol Soc
    Matsangouras JT, Nastos PT (2010) The 27 July 2002 tornado event in Athens, Greece. Adv Sci Res 4:9–13CrossRef
    Mikuš P, Telišman Prtenjak M, Strelec Mahović N (2012) Analysis of the convective activity and its synoptic background over Croatia. Atmos Res 104–105:139–153
    Penzar B, Penzar I, Orlić M (2001) Vrijeme i klima hrvatskog Jadrana. Nakladna kuća “Dr. Feletar”, Hrvatski hidrografski institut Split, Zagreb, 258 str
    Poje D (1965) Tipovi vremena u Jugoslaviji i njihova ovisnost o cirkulaciji atmosfere nad Jugoslavijom. Disertacija, Sveučilištu u Zagrebu, 215 str
    Poje D (2004) Pijavice, trombe i tornada—Prilog istraživanju tih pojava u Hrvatskoj. Jadranska Meteorologija 44:22–31
    Rasmussen EN, Blanchard DO (1998) A baseline climatology of sounding-derived supercell and tornado forecast parameters. Weather Forecast 13:1148–1164CrossRef
    Reap RM (1994) Analysis and prediction of lightning strike distributions associated with synoptic map types over Florida. Mon Weather Rev 122:1698–1715CrossRef
    Renko T, Kozarić T, Tudor M (2013a) An assessment of waterspout occurrence in the Eastern Adriatic basin in 2010: synoptic and mesoscale environment and forecasting method. Atmos Res 123:71–81
    Renko T, Kuzmić J, Strelec Mahović N (2013b) Synoptic and mesoscale analysis of waterspouts in the Adriatic (2001–2011 preliminary climatology). In: 7th European conference on severe storms, Helsinki, Finland, 3–7 June 2013
    Sioutas MV (2003) Tornadoes and waterspouts in Greece. Atmos Res 67–68:645–656CrossRef
    Sioutas MV (2011) A tornado and waterspout climatology for Greece. Atmos Res 100:344–356CrossRef
    Sioutas MV, Flocas HA (2003) Hailstorms in northern Greece: synoptic patterns and thermodynamic environment. Theor Appl Climatol 75:189–202CrossRef
    Sioutas MV, Keul AG (2007) Waterspouts of the Adriatic, Ionian and Aegean Sea and their meteorological environment. Atmos Res 83:542–557CrossRef
    Sioutas M, Doe R, Michaelides S, Christodoulou M, Robins R (2006) Meteorological conditions contributing to the development of severe tornadoes in southern Cyprus. Weather 61:10–16CrossRef
    Sioutas MV, Szilagyi W, Keul A (2009) The International Centre for Waterspout Research. Preprints. In: 5th European conference on severe storms, Landshut-Germany, 12–16 October 2009, p. 319–320
    Sioutas M, Szilagyi W, Keul A (2012) Waterspout outbreaks over areas of Europe and North America: environment and predictability. Atmos Res 123:167–179CrossRef
    Szilagyi W (2005) Waterspout nomogram instruction. International manuscript, Meteorological Service of Canada, Toronto
    Szilagyi W (2009) A waterspout forecasting technique. In: 5th European conference on severe storms, 12–16 October 2009, Landshut, Germany
    Telišman Prtenjak M, Grisogono B (2007) Sea/land breezes climatological characteristics along the northestern Adriatic coast. Theoret Appl Climatol 90:201–215CrossRef
    Yarnal B, Comrie AC, Frakes B, Brown DP (2001) Developments and prospects in synoptic climatology. Rev Int J Climatol 21:1923–1950CrossRef
  • 作者单位:Tanja Renko (1)
    Josipa Kuzmić (1)
    Vinko Šoljan (2)
    Nataša Strelec Mahović (1)

    1. Meteorological and Hydrological Service, Zagreb, Croatia
    2. Croatia Control Ltd., Velika Gorica, Croatia
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Hydrogeology
    Geophysics and Geodesy
    Geotechnical Engineering
    Civil Engineering
    Environmental Management
  • 出版者:Springer Netherlands
  • ISSN:1573-0840
文摘
One step toward improving our understanding of all the possible factors and environmental features that are related to waterspout formation is to establish continuous data collection and to provide a preliminary climatology of waterspouts in a region. A waterspout survey was launched on the official Web site of the Croatian Meteorological and Hydrological Service during late spring 2011. This survey helped create an extensive waterspout database, which recorded a total of 359 waterspout events from 2001 to 2013. Because most reports regarding waterspouts were obtained from unofficial sources, we underline the need for new ways to observe relatively short, rare and spatially limited weather events such as waterspouts. The analysis of the collected data in this work includes the spatial and temporal distribution of the waterspout events per year, season, month and time of day. “Non-thunderstorm” and “thunderstorm” waterspouts were separated, and the absolute frequencies of five synoptic types that were relevant to waterspout development are shown. Finally, the thermodynamic environment was analyzed with the help of radio-sounding data. The results show that waterspout events are equally distributed along the eastern part of the Adriatic coast. However, an evident connection exists between the number of spotted events and the locations of more densely populated areas, i.e., big towns or tourist destinations. Waterspouts are more frequent during the summer months, especially during August, and 51.5 % of the recorded events were related to thunderstorms. Most of them were spotted during the day, whereas only two were spotted during the night; waterspouts developed more often during the morning hours. The synoptic environment dominated by a southwesterly flow has proven to be the most supportive for the development of waterspouts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700