Growth-dependent surface characteristics of Hansenula Polymorpha: implications for expanded bed adsorption chromatography
详细信息    查看全文
  • 作者:Nadia Naz ; Roy N. Dsouza ; Vikas Yelemane…
  • 关键词:expanded bed adsorption ; chromatography ; extended DLVO theory ; surface energetics ; cell adhesion ; hydrophobic interaction ; ion exchange ; microbial growth
  • 刊名:Biotechnology and Bioprocess Engineering
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:20
  • 期:3
  • 页码:576-584
  • 全文大小:321 KB
  • 参考文献:1.Walsh, G. (2012) A review of new biologic drug approvals over the years, featuring highlights from 2010 and 2011. BioPharm. Int. 25: 34鈥?8.
    2.Reichert, J. and C. Paquette (2003) Therapeutic recombinant proteins: Trends in US approvals 1982 to 2002. Curr. Opin. Mol. Ther. 5: 139鈥?47.
    3.Anspach, F. B., D. Curbelo, R. Hartmann, G. Garke, and W. -D. Deckwer (1999) Expanded-bed chromatography in primary protein purification. J. Chromatogr. A. 865: 129鈥?44.View Article
    4.Wheelwright, S.M. (1991) Protein Purification: Design and Scale Up of Downstream Processing. Hanser Publishers.
    5.Harrison, R. G., P. Todd, S. R. Rudge, and D. P. Petrides (2003) Bioseparations Science and Engineering. Oxford University Press, NY.
    6.D鈥橲ouza, R. N., A. M. Azevedo, M. R. Aires-Barros, N. L. Krajnc, P. Kramberger, M. L. Carbajal, M. Grasselli, R. Meyer, and M. Fern谩ndez-Lahore (2013) Emerging technologies for the integration and intensification of downstream bioprocesses. Pharm. Bioproc. 1: 423鈥?40.View Article
    7.Chase, H. A. (1994) Purification of proteins by adsorption chromatography in expanded beds. Trends Biotechnol. 12: 296鈥?03.View Article
    8.Feuser, J., J. Walter, M. -R. Kula, and J. Th枚mmes (1999) Cell/adsorbent interactions in expanded bed adsorption of proteins. Bioseparation 8: 99鈥?09.View Article
    9.Barnfield Frej, A. -K., R. Hjorth, and 脜. Hammarstr枚m (1994) Pilot scale recovery of recombinant annexin V from unclarified Escherichia coli homogenate using expanded bed adsorption. Biotechnol. Bioeng. 44: 922鈥?29.View Article
    10.Calado, C. R. C., J. M. S. Cabral, and L. P. Fonseca (2002) Effect of Saccharomyces cerevisiae fermentation conditions on expanded bed adsorption of heterologous cutinase. J. Chem. Technol. Biotechnol. 77: 1231鈥?237.View Article
    11.Beck, J. T., B. Williamson, and B. Tipton (1999) Direct coupling of expanded bed adsorption with a downstream purification step. Bioseparation 8: 201鈥?07.View Article
    12.Blank, G. S., G. Zapata, R. Fahrner, M. Milton, C. Yedinak, H. Knudsen, and C. Schmelzer (2001) Expanded bed adsorption in the purification of monoclonal antibodies: A comparison of process alternatives. Bioseparation 10: 65鈥?1.View Article
    13.Timo May, K. P. (2011) Improving process economy with expanded-bed adsorption technology. Bioproc. Int. 9: 32鈥?6.
    14.Walter, J. K. and J. Feuser (2003) Novel approach and technology in expanded bed adsorption techniques for primary recovery of proteins at large technical scale. Proceedings of the Extended reports from the 4th International Conference on Expanded Bed Adsorption.
    15.Lin, D. Q., H. M. Fernandez-Lahore, M. R. Kula, and J. Thommes (2001) Minimising biomass/adsorbent interactions in expanded bed adsorption processes: A methodological design approach. Bioseparation. 10: 7鈥?9.View Article
    16.Fern谩ndez-Lahore, H. M., R. Kleef, M. R. Kula, and J. Th枚mmes (1999) The influence of complex biological feedstock on the fluidization and bed stability in expanded bed adsorption. Biotechnol. Bioeng. 64: 484鈥?96.View Article
    17.Vennapusa, R., S. M. Hunegnaw, R. B. Cabrera, and M. Fernandez-Lahore (2008) Assessing adsorbent-biomass interactions during expanded bed adsorption onto ion exchangers utilizing surface energetics. J. Chromatogr. A. 1181: 9鈥?0.View Article
    18.Fern谩ndez-Lahore, H. M., S. Geilenkirchen, K. Boldt, A. Nagel, M. R. Kula, and J. Th枚mmes (2000) The influence of cell adsorbent interactions on protein adsorption in expanded beds. J. Chromatogr. A. 873: 195鈥?08.View Article
    19.Poulin, F., R. Jacquemart, G. de Crescenzo, M. Jolicoeur, and R. Legros (2008) A study of the interaction of HEK-293 cells with streamline chelating adsorbent in expanded bed operation. Biotechnol. Progr. 24: 279鈥?82.View Article
    20.Smith, M. P., M. A. Bulmer, R. Hjorth, and N. J. Titchener-Hooker (2002) Hydrophobic interaction ligand selection and scale-up of an expanded bed separation of an intracellular enzyme from Saccharomyces cerevisiae. J. Chromatogr. A. 968: 121鈥?28.View Article
    21.Skvarla, J. (1993) A physicochemical model of microbial adhesion. J. Chem. Soc. Faraday Tran. 89: 2913鈥?921.View Article
    22.Kondo, A., and M. Ueda (2004) Yeast cell-surface display - applications of molecular display. Appl. Microbiol. Biot. 64: 28鈥?0.View Article
    23.Ravin, N. V., M. A. Eldarov, V. V. Kadnikov, A. V. Beletsky, J. Schneider, E. S. Mardanova, E. M. Smekalova, M. I. Zvereva, O. A. Dontsova, A. V. Mardanov, and K. G. Skryabin (2013) Genome sequence and analysis of methylotrophic yeast Hansenula polymorpha DL1. BMC Genomics. 14: 837.View Article
    24.Ma, Y., M. Zhou, S. Walter, J. Liang, Z. Chen, and L. Wu (2014) Selective adhesion and controlled activity of yeast cells on honeycomb-patterned polymer films via a microemulsion approach. Chem. Commun. 50: 15882鈥?5885.View Article
    25.Kurec, M., and T. Branyik (2011) The role of physicochemical interactions and FLO genes expression in the immobilization of industrially important yeasts by adhesion. Colloids Surf., B. 84: 491鈥?97.View Article
    26.Bou Zeidan, M., G. Zara, C. Viti, F. Decorosi, I. Mannazzu, M. Budroni, L. Giovannetti, and S. Zara (2014) L-histidine inhibits biofilm formation and FLO11-associated phenotypes in Saccharomyces cerevisiae flor yeasts. PloS one. 9: e112141.
    27.Vennapusa, R. R., C. Tari, R. Cabrera, and M. Fernandez-Lahore (2009) Surface energetics to assess biomass attachment onto hydrophobic interaction adsorbents in expanded beds. Biochem. Eng. J. 43: 16鈥?6.View Article
    28.Ottewill, R. H. and J. N. Shaw (1972) Electrophoretic studies on polystyrene latices. J. Electroanal. Chem. Interfacial Electrochem. 37: 133鈥?42.View Article
    29.Farahat, M. and T. Hirajima (2012) Hydrophilicity of Ferroplasma acidiphilum and its effect on the depression of pyrite. Miner. Eng. 36鈥?8: 242鈥?47.View Article
    30.Lipke, P. N. and J. Kurjan (1992) Sexual agglutination in budding yeasts: Structure, function, and regulation of adhesion glycoproteins. Microbiol. Rev. 56: 180鈥?94.
    31.Tari, C., R. Vennapusa, R. B. Cabrera, and M. Fern谩ndez-Lahore (2008) Colloid deposition experiments as a diagnostic tool for biomass attachment onto bioproduct adsorbent surfaces. J. Chem. Technol. Biotechnol. 83: 183鈥?91.View Article
    32.Kucsera, J., K. Yarita, and K. Takeo (2000) Simple detection method for distinguishing dead and living yeast colonies. J. Microbiol. Methods. 41: 19鈥?1.View Article
    33.Sharma, P. K. and K. Hanumantha Rao (2002) Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry. Adv. Colloid. Interface Sci. 98: 341鈥?63.View Article
    34.Huang, A. Y. and J. C. Berg (2006) High-salt stabilization of Laponite clay particles. J. Colloid. Interface Sci. 296: 159鈥?64.View Article
    35.van Oss, C. J. (2006) Interfacial Forces in Aqueous Media. 2nd ed. Taylor & Francis, Boca Raton.
    36.Vennapusa, R. R., M. Aasim, R. Cabrera, and M. Fernandez-Lahore (2009) Surface energetics to assess biomass attachment onto immobilized metal-ion chromatography adsorbents in expanded beds. Biotechnol. Bioproc. Eng. 14: 419鈥?28.View Article
    37.Vennapusa, R. R., O. Aguilar, J. M. B. Mintong, G. Helms, J. Fritz, and M. F. Lahore (2010) Biomass-adsorbent adhesion forces as an useful indicator of performance in expanded beds. Separ. Sci. Technol. 45: 2235鈥?244.View Article
    38.Vennapusa, R. R., S. Binner, R. Cabrera, and M. Fernandez-Lahore (2008) Surface energetics to assess microbial adhesion onto fluidized chromatography adsorbents. Eng. Life Sci. 8: 530鈥?39.View Article
    39.Farahat, M., T. Hirajima, K. Sasaki, and K. Doi (2009) Adhesion of Escherichia coli onto quartz, hematite and corundum: Extended DLVO theory and flotation behavior. Colloids Surf. B. 74: 140鈥?49.View Article
    40.Lin, D. -Q., P. J. Brixius, J. J. Hubbuch, J. Th枚mmes, and M. -R. Kula (2003) Biomass/adsorbent electrostatic interactions in expanded bed adsorption: A zeta potential study. Biotechnol. Bioeng. 83: 149鈥?57.View Article
    41.Lin, D. -Q., L. -N. Zhong, and S. -J. Yao (2006) Zeta potential as a diagnostic tool to evaluate the biomass electrostatic adhesion during ion-exchange expanded bed application. Biotechnol. Bioeng. 95: 185鈥?91.View Article
  • 作者单位:Nadia Naz (1)
    Roy N. Dsouza (1)
    Vikas Yelemane (1)
    Rami Reddy Vennapusa (2)
    Martin Kangwa (1)
    Marcelo Fern谩ndez-Lahore (1)

    1. Downstream Bioprocessing Laboratory, School of Engineering and Science, Jacobs University, Campus Ring 1, D-28759, Bremen, Germany
    2. Manufacturing Technologies Laboratory, Shantha Biotechnics (A Sanofi Company), Hyderabad, 501-401, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
  • 出版者:The Korean Society for Biotechnology and Bioengineering
  • ISSN:1976-3816
文摘
The cell surface characteristics of a methylotrophic wild-type strain of yeast, Hansenula polymorpha, was investigated at different growth stages (early log, late log, stationary and death) of the biomass under different conditions (low and high salt in intact and disrupted forms) using extended DLVO theory. Biomass was characterized by contact angle measurements as well as zeta potential determinations. These measurements were used to describe the hydrophobic, polar, and electrostatic behavior of the biomass in its growth stages. Consequently, interaction free energy vs. distance profiles of the biomass with anion-exchange and HIC adsorbents were conveniently generated. A strong interaction was calculated between cells and the adsorbents in the stationary and death phases of the biomass illustrated by the striking correlation between theoretical predictions and biomass deposition experiments. The physico-chemical properties of biomass in different growth phases have important implications for expanded bed adsorption chromatography, where unfavorable biomass-adsorbent interactions adversely affect process efficiency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700