Removal of anionic azo dye from aqueous solution via an adsorption–photosensitized regeneration process on a TiO2 surface
详细信息    查看全文
  • 作者:Nan Bao (1)
    Yuan Li (1)
    Xiao-Hong Yu (1)
    Jun-Jian Niu (1)
    Guo-Lin Wu (1)
    Xiao-Hong Xu (2)
  • 关键词:Adsorption ; TiO2 fiber ; Visible light ; Photosensitization ; Regeneration ; Azo dye
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:20
  • 期:2
  • 页码:897-906
  • 全文大小:391KB
  • 参考文献:1. Ali I, Gupta VK (2007) Advances in water treatment by adsorption technology. Nat Protoc 1:2661-667 CrossRef
    2. Arami M, Limaee NY, Mahmoodi NM, Tabrizi NS (2006) Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull. J Hazard Mater 135:171-79 CrossRef
    3. Bandara J, Mielczarski JA, Kiwi J (1999) 2. Photosensitized degradation of azo dyes on Fe, Ti, and Al oxides. Mechanism of charge transfer during the degradation. Langmuir 15:7670-679 CrossRef
    4. Bao N, Wei ZT, Ma ZH, Liu F, Yin GB (2010) Si-doped mesoporous TiO2 continuous fibers: preparation by centrifugal spinning and photocatalytic properties. J Hazard Mater 174:129-36 CrossRef
    5. Bao N, Yin GB, Wei ZT, Li Y, Ma ZH (2011a) Preparation of TiO2 continuous fibers with oxygen vacancies and photocatalytic activity. Integr Ferroelectr 127:97-05 CrossRef
    6. Bao N, Li Y, Wei ZT, Yin GB, Niu JJ (2011b) Adsorption of dyes on hierarchical mesoporous TiO2 fibers and its enhanced photocatalytic properties. J Phys Chem C 115:5708-719 CrossRef
    7. Bourikas K, Stylidi M, Kondarides DI, Verykios XE (2005) Adsorption of acid orange 7 on the surface of titanium dioxide. Langmuir 21:9222-230 CrossRef
    8. Chen CC, Ma WH, Zhao JC (2010) Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev 39:4206-219 CrossRef
    9. Cho YM, Choi WY, Lee CH, Hyeon T, Lee HI (2001) Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environ Sci Technol 35:966-70 CrossRef
    10. Choi SK, Kim S, Lim SK, Park H (2010) Photocatalytic comparison of TiO2 nanoparticles and electrospun TiO2 nanofibers: effects of mesoporosity and interparticle charge transfer. J Phys Chem C 114:16475-6480 CrossRef
    11. Duncan WR, Stier WM, Prezhdo OV (2005) Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection across the alizarin–TiO2 interface. J Am Chem Soc 127:7941-951 CrossRef
    12. Geethakarthi A, Phanikumar BR (2011) Characterization of tannery sludge activated carbon and its utilization in the removal of azo reactive dye. Environ Sci Pollut R 19:656-65 CrossRef
    13. Gupta VK, Ali I (2008) Removal of endosulfan and methoxychlor from water on carbon slurry. Environ Sci Technol 42:766-70 CrossRef
    14. Gupta VK, Rastogi A (2008) Equilibrium and kinetic modelling of cadmium(II) biosorption by nonliving algal biomass / Oedogonium sp. from aqueous phase. J Hazard Mater 153:759-66 CrossRef
    15. Gupta VK, Ali I, Saini VK, Gerven TV, Bruggen BVD, Vandecasteele C (2005) Removal of dyes from wastewater using bottom ash. Ind Eng Chem Res 44:3655-664 CrossRef
    16. Gupta VK, Mittal A, Krishnan L, Mittal J (2006a) Adsorption treatment and recovery of the hazardous dye, Brilliant Blue FCF, over bottom ash and de-oiled soya. J Colloid Interf Sci 293:16-6 CrossRef
    17. Gupta VK, Mittal A, Gajbe V, Mittal J (2006b) Removal and recovery of the hazardous azo dye, acid orange 7 through adsorption over waste materials—bottom ash and de-oiled soya. Ind Eng Chem Res 45:1446-453 CrossRef
    18. Gupta VK, Jain R, Mittal A, Mathur M, Sikarwar S (2007a) Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J Colloid Interf Sci 309:464-9 CrossRef
    19. Gupta VK, Mathur M, Sikarwar S, Mittal A (2007b) Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. J Environ Manage 85:956-64 CrossRef
    20. Gupta VK, Ali I, Saini VK (2007c) Defluoridation of wastewaters using waste carbon slurry. Water Res 41:3307-316 CrossRef
    21. Gupta VK, Ali I, Saini VK (2007d) Adsorption studies on the removal of Vertigo Blue 49 and Orange DNA13 from aqueous solutions using carbon slurry developed from a waste material. J Colloid Interf Sci 315:87-3 CrossRef
    22. Gupta VK, Jain R, Varshney S (2007e) Electrochemical removal of the hazardous dye Reactofix Red 3 BFN from industrial effluents. J Colloid Interf Sci 312:292-96 CrossRef
    23. Gupta VK, Carrott PJM, Ribeiro Carrott MML, Suhas (2009) Low-cost adsorbents: growing approach to wastewater treatment a review. Crit Rev Env Sci Tec 39:783-42 CrossRef
    24. Gupta VK, Jain R, Mittal A, Saleh TA, Nayak A, Agarwal S, Sikarwar S (2012a) Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Mater Sci Eng C 32:12-7 CrossRef
    25. Gupta VK, Jain R, Agarwal S, Nayak A, Shrivastava M (2012b) Photodegradation of hazardous dye quinoline yellow catalyzed by TiO2. J Colloid Interf Sci 366:135-40 CrossRef
    26. Ho WK, Yu JC, Lee SC (2006) Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. Chem Commun 111:1115-117 CrossRef
    27. Jing LQ, Xin BF, Yuan FL, Xue LP, Wang BQ, Fu HG (2006) Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships. J Phys Chem B 110:17860-7865 CrossRef
    28. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49:1-4 CrossRef
    29. Kyung H, Lee J, Choi W (2005) Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-light illumination. Environ Sci Technol 39:2376-382 CrossRef
    30. Li D, Haneda H, Hishita S, Ohashi N (2005) Visible-light-driven N ?F-codoped TiO2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification. Chem Mater 17:2596-602 CrossRef
    31. Liao GZ, Chen S, Quan X, Zhang YB, Zhao HM (2011) Remarkable improvement of visible light photocatalysis with PANI modified core–shell mesoporous TiO2 microspheres. Appl Catal B Environ 102:126-31 CrossRef
    32. Lun P, Zou JJ, Zhang XW, Wang L (2011) Water-mediated promotion of dye sensitization of TiO2 under visible light. J Am Chem Soc 133:10000-0002 CrossRef
    33. Minero C, Mariella G, Maurino V, Pelizzetti E (2000) Photocatalytic transformation of organic compounds in the presence of inorganic anions. 1. Hydroxyl-mediated and direct electron-transfer reactions of phenol on a titanium dioxide–fluoride system. Langmuir 16:2632-641 CrossRef
    34. Mittal A, Gupta VK (2010) Adsorptive removal and recovery of the azo dye Eriochrome Black T. Toxicol Environ Chem 92:1813-823 CrossRef
    35. Mittal A, Krishnan L, Gupta VK (2005) Removal and recovery of malachite green from wastewater using an agricultural waste material, de-oiled soya. Sep Purif Technol 43:125-33 CrossRef
    36. Mittal A, Mittal J, Malviya A, Gupta VK (2009a) Adsorptive removal of hazardous anionic dye “Congo red-from wastewater using waste materials and recovery by desorption. J Colloid Interf Sci 340:16-6 CrossRef
    37. Mittal A, Kaur D, Mittal J (2009b) Batch and bulk removal of a triarylmethane dye, Fast Green FCF, from wastewater by adsorption over waste materials. J Hazard Mater 163:568-77 CrossRef
    38. Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK (2010a) Decoloration treatment of a hazardous triarylmethane dye, Light Green SF (yellowish) by waste material adsorbents. J Colloid Interf Sci 342:518-27 CrossRef
    39. Mittal A, Mittal J, Malviya A, Gupta VK (2010b) Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. J Colloid Interf Sci 344:497-07 CrossRef
    40. Miyauchi M, Ikezawa A, Tobimatsu H, Irie H, Hashimoto K (2004) Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films. Phys Chem Chem Phys 6:865-70 CrossRef
    41. Netpradit S, Thiravetyan P, Towprayoon S (2003) Application of ‘waste-metal hydroxide sludge for adsorption of azo reactive dyes. Water Res 37:763-72 CrossRef
    42. Ravikovitch PI, Haller GL, Neimark AV (1998) Density functional theory model for calculating pore size distributions: pore structure of nanoporous catalysts. Adv Colloid Interface Sci 76-7:203-26 CrossRef
    43. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247-55 CrossRef
    44. Sajjad AKL, Shamaila S, Tian BZ, Chen F, Zhang JL (2010) Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WOx/TiO2 photocatalyst. J Hazard Mater 177:781-91 CrossRef
    45. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity. Pure Appl Chem 57:603-19 CrossRef
    46. Stylidi M, Kondarides DI, Verykios XE (2003) Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Appl Catal B Environ 40:271-86 CrossRef
    47. Thommes M, Smarsly B, Groenewolt M, Ravikovitch PI, Neimark AV (2006) Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas. Langmuir 22:756-64 CrossRef
    48. U?urlu M, Karao?lu MH (2008) Removal of AOX, total nitrogen and chlorinated lignin from bleached Kraft mill effluents by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as photocatalyst. Environ Sci Pollut R 16:265-73
    49. Vinodgopal K, Wynkoop DE, Kamat PV (1996) Environmental photochemistry on semiconductor surfaces: photosensitized degradation of a textile azo dye, acid orange 7, on TiO2 particles using visible light. Environ Sci Technol 30:1660-666 CrossRef
    50. Vohra MS, Kim S, Choi WJ (2003) Effects of surface fluorination of TiO2 on the photocatalytic degradation of tetramethylammonium. J Photochem Photobiol A Chem 160:55-0 CrossRef
    51. Zhao JC, Chen CC, Ma WH (2005) Photocatalytic degradation of organic pollutants under visible light irradiation. Top Catal 35:269-78 CrossRef
    52. Zhao D, Chen CC, Wang YF, Ma WH, Zhao JC, Rajh T, Zang L (2008) Enhanced photocatalytic degradation of dye pollutants under visible irradiation on Al(III)-modified TiO2: structure, interaction, and interfacial electron transfer. Environ Sci Technol 42:308-14 CrossRef
    53. Zhou JK, Lv L, Yu J, Li HL, Guo PZ (2008) Synthesis of self-organized polycrystalline F-doped TiO2 hollow microspheres and their photocatalytic activity under visible light. J Phys Chem C 112:5316-321 CrossRef
  • 作者单位:Nan Bao (1)
    Yuan Li (1)
    Xiao-Hong Yu (1)
    Jun-Jian Niu (1)
    Guo-Lin Wu (1)
    Xiao-Hong Xu (2)

    1. School of Environmental Science and Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Jinan, 250100, Peoples Republic of China
    2. School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, Peoples Republic of China
  • ISSN:1614-7499
文摘
Textile dye effluents are typically characterized by strong color and recalcitrance, even at very low concentration. The process of enrichment of anionic azo dye on the surface of TiO2 fibers followed by photosensitization degradation under ambient air conditions was extensively investigated. Adsorption isotherms and zeta potentials were used to describe the “dye/TiO2 surface-interface, taking into account the effects of pH on the nature and population of the surface groups on the TiO2 fibers. The extent of the photocatalytic degradation of dye on TiO2 surface was determined by FTIR. N2 adsorption isotherms and optical spectra were employed to investigate the effect of photosensitization. The adsorption of dyes on the TiO2 surface occurs via electrostatic attraction through the formation of single- or multidentate-coordinated surface complexes. Almost complete photobleaching of the absorption band at 534?nm is achieved in ~4?h. Dye-sensitized TiO2 fiber could absorb part of the visible light spectrum (λ-lt;-00?nm). Interfacial electron transfer can potentially alter the degradation efficiency. The regenerated TiO2 fiber could be reused for subsequent decolorization without a decline in adsorption efficiency compared with freshly prepared TiO2 samples, which may be attributed to preservation of the hierarchical pore structure and restoration of the original surface properties. In summary, we propose an efficient “adsorption–photoregeneration–reuse-process applying TiO2 fibers for the degradation of dyes in water.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700