Spatial proteomic and phospho-proteomic organization in three prototypical cell migration modes
详细信息    查看全文
  • 作者:Georgios Fengos (1)
    Alexander Schmidt (2)
    Katrin Martin (3)
    Erika Fluri (3)
    Ruedi Aebersold (4) (5)
    Dagmar Iber (1)
    Olivier Pertz (3)

    1. ETH Zurich
    ; D-BSSE ; Mattenstrasse 26 ; CH-4058 ; Basel ; Switzerland
    2. University of Basel
    ; Biozentrum ; Klingelbergstrasse 50/70 ; CH-4056 ; Basel ; Switzerland
    3. Department Biomedicine
    ; University of Basel ; Mattenstrasse 28 ; CH-4058 ; Basel ; Switzerland
    4. Department of Biology
    ; Institute of Molecular Systems Biology ; ETH Zurich ; Wolfgang-Pauli-Strasse 16 ; CH-8093 ; Zurich ; Switzerland
    5. Faculty of Science
    ; University of Zurich ; Zurich ; Switzerland
  • 关键词:Fibroblast ; Directional cell migration ; Signaling ; Proteomics ; Phosphorylation
  • 刊名:Proteome Science
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:12
  • 期:1
  • 全文大小:2,895 KB
  • 参考文献:1. Britten, RJ, Davidson, EH (1969) Gene regulation for higher cells: a theory. Science 165: pp. 349-357 CrossRef
    2. Beato, M (1993) Gene regulation by steroid hormones. Gene Expression. pp. 43-75 CrossRef
    3. Hunter, T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80: pp. 225-236 CrossRef
    4. Firtel, RA, Chung, CY (2000) The molecular genetics of chemotaxis: sensing and responding to chemoattractant gradients. Bioessays 22: pp. 603-615 CrossRef
    5. Janetopoulos, C, Firtel, RA (2008) Directional sensing during chemotaxis. FEBS Lett 582: pp. 2075-2085 CrossRef
    6. Galbraith, CG, Yamada, KM, Galbraith, JA (2007) Polymerizing actin fibers position integrins primed to probe for adhesion sites. Sci Signal 315: pp. 992
    7. Wehrle-Haller, B, Imhof, BA (2003) Actin, microtubules and focal adhesion dynamics during cell migration. Int J Biochem Cell Biol 35: pp. 39 CrossRef
    8. Wittmann, T, Waterman-Storer, CM (2001) Cell motility: can Rho GTPases and microtubules point the way?. J Cell Sci 114: pp. 3795-3803
    9. Caswell, PT, Norman, JC (2006) Integrin trafficking and the control of cell migration. Traffic 7: pp. 14-21 CrossRef
    10. Cho, SY, Klemke, RL (2002) Purification of pseudopodia from polarized cells reveals redistribution and activation of Rac through assembly of a CAS/Crk scaffold. J Cell Biol 156: pp. 725-736 CrossRef
    11. Pertz, OC, Wang, Y, Yang, F, Wang, W, Gay, LJ, Gristenko, MA, Clauss, TR, Anderson, DJ, Liu, T, Auberry, KJ (2008) Spatial mapping of the neurite and soma proteomes reveals a functional Cdc42/Rac regulatory network. Proc Natl Acad Sci 105: pp. 1931-1936 CrossRef
    12. Hood, JD, Cheresh, DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2: pp. 91-100 CrossRef
    13. Grammer, TC, Blenis, J (1997) Evidence for MEK-independent pathways regulating the prolonged activation of the ERK-MAP kinases. Oncogene 14: pp. 1635-1642 CrossRef
    14. Daaka, Y (2002) Mitogenic action of LPA in prostate. Biochim Biophys Acta (BBA)-Mol Cell Biol Lipids 1582: pp. 265-269 CrossRef
    15. Diella, F, Cameron, S, Gem眉nd, C, Linding, R, Via, A, Kuster, B, Sicheritz-Ponten, T, Blom, N, Gibson, TJ (2004) Phospho. ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins. BMC Bioinforma 5: pp. 79 CrossRef
    16. Galvez, T, Teruel, MN, Do Heo, W, Jones, JT, Kim, ML, Liou, J, Myers, JW, Meyer, T (2007) siRNA screen of the human signaling proteome identifies the PtdIns (3, 4, 5) P. Genome Biol 8: pp. R142 CrossRef
    17. Jensen, LJ, Kuhn, M, Stark, M, Chaffron, S, Creevey, C, Muller, J, Doerks, T, Julien, P, Roth, A, Simonovic, M (2009) STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37: pp. D412-D416 CrossRef
    18. Rabilloud, T (2009) Membrane proteins and proteomics: love is possible, but so difficult. Electrophoresis 30: pp. S174-S180 CrossRef
    19. Maeder, CI, Hink, MA, Kinkhabwala, A, Mayr, R, Bastiaens, PI, Knop, M (2007) Spatial regulation of Fus3 MAP kinase activity through a reaction鈥揹iffusion mechanism in yeast pheromone signalling. Nat Cell Biol 9: pp. 1319-1326 CrossRef
    20. Machacek, M, Hodgson, L, Welch, C, Elliott, H, Pertz, O, Nalbant, P, Abell, A, Johnson, GL, Hahn, KM, Danuser, G (2009) Coordination of Rho GTPase activities during cell protrusion. Nature 461: pp. 99-103 CrossRef
    21. Pertz, O, Hodgson, L, Klemke, RL, Hahn, KM (2006) Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440: pp. 1069-1072 CrossRef
    22. Bodenmiller, B, Mueller, LN, Mueller, M, Domon, B, Aebersold, R (2007) Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods 4: pp. 231-237 CrossRef
    23. Schmidt, A, Beck, M, Malmstr枚m, J, Lam, H, Claassen, M, Campbell, D, Aebersold, R (2011) Absolute quantification of microbial proteomes at different states by directed mass spectrometry. Mol Syst Biol 7: pp. 510 CrossRef
    24. Keller, A, Nesvizhskii, AI, Kolker, E, Aebersold, R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74: pp. 5383-5392 CrossRef
    25. Nesvizhskii, AI, Keller, A, Kolker, E, Aebersold, R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75: pp. 4646-4658 CrossRef
    26. Schmidt, A, Gehlenborg, N, Bodenmiller, B, Mueller, LN, Campbell, D, Mueller, M, Aebersold, R, Domon, B (2008) An integrated, directed mass spectrometric approach for in-depth characterization of complex peptide mixtures. Mol Cell Proteomics 7: pp. 2138-2150 CrossRef
  • 刊物主题:Proteomics;
  • 出版者:BioMed Central
  • ISSN:1477-5956
文摘
Background Tight spatio-temporal signaling of cytoskeletal and adhesion dynamics is required for localized membrane protrusion that drives directed cell migration. Different ensembles of proteins are therefore likely to get recruited and phosphorylated in membrane protrusions in response to specific cues. Results Here, we use an assay that allows to biochemically purify extending protrusions of cells migrating in response to three prototypical receptors: integrins, recepor tyrosine kinases and G-coupled protein receptors. Using quantitative proteomics and phospho-proteomics approaches, we provide evidence for the existence of cue-specific, spatially distinct protein networks in the different cell migration modes. Conclusions The integrated analysis of the large-scale experimental data with protein information from databases allows us to understand some emergent properties of spatial regulation of signaling during cell migration. This provides the cell migration community with a large-scale view of the distribution of proteins and phospho-proteins regulating directed cell migration.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700