Development and validation of chloroplast DNA markers to assist Aegilops geniculata and Aegilops neglecta germplasm management
详细信息    查看全文
  • 作者:Patricia Giraldo ; Magdalena Ruiz…
  • 关键词:Aegilops ; Chloroplast DNA markers ; Crop wild relatives ; Genetic resources management
  • 刊名:Genetic Resources and Crop Evolution
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:63
  • 期:3
  • 页码:401-407
  • 全文大小:476 KB
  • 参考文献:Badaeva ED, Amosova AV, Samatadze TE et al (2004) Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Syst Evol 246:45–76CrossRef
    Badaeva ED, Dedkova OS, Zoshchuk SA et al (2011) Comparative analysis of the N-genome in diploid and polyploid Aegilops species. Chromosome Res 19:541–548CrossRef PubMed
    Bandou H, Rodriguez-Quijano M, Carrillo JM et al (2009) Morphological and genetic variation in Aegilops geniculata from Algeria. Plant Syst Evol 277:85–97CrossRef
    CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci USA 106:12794–12797CrossRef PubMedCentral
    Chennaveeraiah M (1960) Karyomorphologic and cytotaxonomic studies in Aegilops. Acta Hort Gothoburg 23:85–178
    Cifuentes M (2007) Intergenomic pairing and formation of unreduced polen in wheat × Aegilops hybrids. Technical University of Madrid. http://​oa.​upm.​es/​1811/​1/​MARTA_​CIFUENTES_​OCHOA.​pdf
    Dvorak J (1998) Genome analysis in the Triticum-Aegilops alliance. In: Proceedings of the 9th international wheat genetics symposium. Saskatoon, pp 8–11
    Feldman M, Levy AA (2012) Genome evolution due to allopolyploidization in wheat. Genetics 192:763–774CrossRef PubMed PubMedCentral
    Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885CrossRef PubMed PubMedCentral
    Haider N (2011) Chloroplast-specific universal primers and their uses in plant studies. Biol Plant 55:225–236CrossRef
    Haider N, Nabulsi I, MirAli N (2010) Comparison of the efficiency of A-PAGE and SDS-PAGE, ISSRs and RAPDs in resolving genetic relationships among Triticum and Aegilops species. Genet Resour Crop Evol 57:1023–1039CrossRef
    Hammer K (1980) Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Aegilops L. Kulturpflanze 28:33–180CrossRef
    Hammer K, Morimoto Y (2011) Classifications of infraspecific variation in crop plants. In: Guarino L, Ramanatha RV, Goldberg E (eds) Collecting plant genetic diversity: technical guidelines, 2011 Update. http://​cropgenebank.​sgrp.​cgiar.​org/​index.​php?​option=​com_​content&​view=​article&​id=​665
    Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS One 6:e19254. doi:10.​1371/​journal.​pone.​0019254 CrossRef PubMed PubMedCentral
    Kihara H (1963) Interspecific relationship in Triticum and Aegilops. Seiken Ziho 15:1–12
    Kilian B, Mammen K, Millet E et al (2011) Aegilops. In: Kole C (ed) Wild crop relatives: genomic and breeding resources Cereals. Springer, Berlin, pp 1–76. doi:10.​1007/​978-3-642-14228-4_​1 CrossRef
    Kimber G, Feldman M (1987) Wild wheat. An introduction. Special Report 353, College of Agriculture, University of Missouri-Columbia
    Manzanero S, Vega JM, Houben A, Puertas MJ (2002) Characterization of the constriction with neocentric activity of 5RL chromosome in wheat. Chromosoma 111:228–235. doi:10.​1007/​s00412-002-0211-7 CrossRef PubMed
    Maxted N (2011) Aids to taxonomic identification In: Guarino L, Ramanatha RV, Goldberg E (eds) Collecting plant genetic diversity: technical guidelines. 2011 Update. http://​cropgenebank.​sgrp.​cgiar.​org/​index.​php?​option=​com_​content&​view=​article&​id=​390&​Itemid=​557
    Ogihara Y, Tsunewaki K (1988) Diversity and evolution of chloroplast DNA in Triticum and Aegilops as revealed by restriction fragment analysis. Theor Appl Genet 76:321–332. doi:10.​1007/​BF00265331 CrossRef PubMed
    Resta P, Zhang HB, Dubcovsky J, Dvorak J (1996) The origins of the genomes of Triticum biunciale, T. ovatum, T. neglectum, T. columnare, and T. rectum (Poaceae) based on variation in repeated nucleotide sequences. Am J Bot 83:1556–1565CrossRef
    Schneider A, Molnar I, Molnar-Lang M (2008) Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163:1–19CrossRef
    van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agricultural University Papers, vol 94–7. Agricultural University, Wageningen
    Witcombe JR (1983) A guide to the species of Aegilops L.: their taxonomy, morphology and distribution. International Board for Plant Genetic Resources (IPGRI), Rome
    Yen Y, Kimber G (1992) Genomic relationships of N-genome Triticum species. Genome 35:962–966CrossRef
    Zaharieva M, Monneveux P (2006) Spontaneous hybridization between bread wheat (Triticum aestivum L.) and its wild relatives in Europe. Crop Sci 46:512–527CrossRef
    Zaharieva M, Dimov A, Stankova P, David J, Monneveux P (2003) Morphological diversity and potential interest for wheat improvement of three Aegilops L. species from Bulgaria. Genet Resour Crop Evol 50:507–517CrossRef
    Zohary D, Feldman M (1962) Hybridization between amphidiploids and evolution of polyploids in wheat (Aegilops–Triticum) group. Evolution 16:44–61CrossRef
  • 作者单位:Patricia Giraldo (1)
    Magdalena Ruiz (2)
    Marta Rodríguez-Quijano (1)
    Elena Benavente (1)

    1. Department of Biotechnology-Plant Biology, School of Agricultural Engineering, Technical University of Madrid (UPM), 28040, Madrid, Spain
    2. Plant Genetic Resources Centre (CRF), National Institute for Agricultural and Food Research and Technology (INIA), Autovía Aragon Km 36, Apdo 1045, Alcalá de Henares, 28800, Madrid, Spain
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Plant Physiology
    Plant Pathology
  • 出版者:Springer Netherlands
  • ISSN:1573-5109
文摘
The genus Aegilops includes a number of wheat wild relatives representing a valuable gene pool for stress adaptive traits. Collection of new accessions and proper management of Aegilops germplasm is thus essential for wheat improvement progress. Among the most worldwide distributed Aegilops species, A. geniculata Roth (2n = 4x = 28), A. neglecta Req. ex Bertol. (subsp. neglecta; 2n = 4x = 28) and A. recta (Zhuk.) Chen. (syn. A. neglecta Req. ex Bertol. subsp. recta (Zhuk.) Hammer; 2n = 6x = 42) are particularly difficult to distinguish each other because of their high morphological and genomic similarities. Based on their distinct cytoplasmic lineage, we have developed two chloroplast DNA-based molecular markers that accurately discriminate A. geniculata from A. neglecta and A. recta. The use of these markers, aided by chromosome counting to differentiate A. neglecta from A. recta, has allowed to assess the accuracy of species assignment in 125 accessions from Germplasm Genebank collections and recent collecting expeditions. This study has revealed taxonomic mistakes or inaccuracies in 18 % of the entries examined. The ambiguous use of the same species name for the allotetraploid A. neglecta and the allohexaploid A. recta, very extended among germplasm banks and managers, is in the origin of some of the errors detected.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700