Whole-genome sequencing of Mesorhizobium huakuii 7653R provides molecular insights into host specificity and symbiosis island dynamics
详细信息    查看全文
  • 作者:Shanming Wang (7)
    Baohai Hao (8)
    Jiarui Li (9)
    Huilin Gu (7)
    Jieli Peng (7)
    Fuli Xie (7)
    Xinyin Zhao (9)
    Christian Frech (9)
    Nansheng Chen (7) (9)
    Binguang Ma (8)
    Youguo Li (7)

    7. State Key Laboratory of Agricultural Microbiology
    ; Huazhong Agricultural University ; Wuhan ; Hubei ; P. R. China
    8. Center for Bioinformatics
    ; School of Life Science and Technology ; Huazhong Agricultural University ; Wuhan ; Hubei ; P. R. China
    9. Department of Molecular Biology and Biochemistry
    ; Simon Fraser University ; Burnaby ; British Columbia ; Canada
  • 关键词:Mesorhizobium huakuii 7653R ; Genome sequencing ; Comparative analysis ; Host specificity ; Symbiosis island
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:2,974 KB
  • 参考文献:1. Masson-Boivin, C, Giraud, E, Perret, X, Batut, J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes?. Trends Microbiol 17: pp. 458-466 CrossRef
    2. The current taxonomy of rhizobia [http://www.rhizobia.co.nz/taxonomy/rhizobia]
    3. Degefu, T, Wolde-Meskel, E, Liu, B, Cleenwerck, I, Willems, A, Frostegard, A (2013) Mesorhizobium shonense sp. nov., Mesorhizobium hawassense sp. nov. and Mesorhizobium abyssinicae sp. nov. isolated from root nodules of different agroforestry legume trees. Int J Syst Evol Microbiol 63: pp. 1746-1753 CrossRef
    4. CHEN, HK, SHU, MK (1944) Note on the root-nodule bacteria of Astragalus Sinicus L. Soil Sci 58: pp. 291-294 CrossRef
    5. Chen, W, Li, G, Qi, Y, Wang, E, Yuan, HL, Li, J (1991) Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. Int J Syst Bacteriol 41: pp. 275-280 CrossRef
    6. Jarvis, B, Van Berkum, P, Chen, W, Nour, S, Fernandez, M, Cleyet-Marel, J, Gillis, M (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47: pp. 895-898 CrossRef
    7. Cheng, G, Li, Y, Xie, B, Yang, C, Zhou, J (2007) Cloning and identification of lpsH, a novel gene playing a fundamental role in symbiotic nitrogen fixation of Mesorhizobium huakuii. Curr Microbiol 54: pp. 371-375 CrossRef
    8. Cheng, GJ, Li, YG, Zhou, JC (2006) Cloning and identification of opa22, a new gene involved in nodule formation by Mesorhizobium huakuii. FEMS Microbiol Lett 257: pp. 152-157 CrossRef
    9. Xie, F, Cheng, G, Xu, H, Wang, Z, Lei, L, Li, Y (2011) Identification of a novel gene for biosynthesis of a bacteroid-specific electron carrier menaquinone. PLoS One 6: pp. e28995 CrossRef
    10. Kaneko, T, Nakamura, Y, Sato, S, Asamizu, E, Kato, T, Sasamoto, S, Watanabe, A, Idesawa, K, Ishikawa, A, Kawashima, K, Kimura, T, Kishida, Y, Kiyokawa, C, Kohara, M, Matsumoto, M, Matsuno, A, Mochizuki, Y, Nakayama, S, Nakazaki, N, Shimpo, S, Sugimoto, M, Takeuchi, C, Yamada, M, Tabata, S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7: pp. 331-338 CrossRef
    11. Turner, SL, Zhang, XX, Li, FD, Young, JP (2002) What does a bacterial genome sequence represent? Mis-assignment of MAFF 303099 to the genospecies Mesorhizobium loti. Microbiology 148: pp. 3330-3331
    12. Sullivan, JT, Trzebiatowski, JR, Cruickshank, RW, Gouzy, J, Brown, SD, Elliot, RM, Fleetwood, DJ, McCallum, NG, Rossbach, U, Stuart, GS, Weaver, JE, Webby, RJ, De Bruijn, FJ, Ronson, CW (2002) Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol 184: pp. 3086-3095 CrossRef
    13. Sullivan, JT, Brown, SD, Ronson, CW (2013) The NifA-RpoN Regulon of Mesorhizobium loti Strain R7A and Its Symbiotic Activation by a Novel LacI/GalR-Family Regulator. PLoS One 8: pp. e53762 CrossRef
    14. Hubber, A, Vergunst, AC, Sullivan, JT, Hooykaas, PJ, Ronson, CW (2004) Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol Microbiol 54: pp. 561-574 CrossRef
    15. Hubber, AM, Sullivan, JT, Ronson, CW (2007) Symbiosis-induced cascade regulation of the Mesorhizobium loti R7A VirB/D4 type IV secretion system. Mol Plant Microbe Interact 20: pp. 255-261 CrossRef
    16. Estrella, MJ, Mu帽oz, S, Soto, MJ, Ruiz, O, Sanju谩n, J (2009) Geotus tenuis in typical soils of the Salado River Basin (Argentina). Appl Environ Microbiol 75: pp. 1088-1098 CrossRef
    17. Zhang, XX, Turner, SL, Guo, XW, Yang, HJ, Debelle, F, Yang, GP, Denarie, J, Young, JP, Li, FD (2000) The common nodulation genes of Astragalus sinicus rhizobia are conserved despite chromosomal diversity. Appl Environ Microbiol 66: pp. 2988-2995 CrossRef
    18. Nanadasena, K, Yates, R, Tiwari, R, O'Hara, G, Howieson, J, Ninawi, M, Chertkov, O, Detter, C, Tapia, R, Han, S, Woyke, T, Pitluck, S, Nolan, M, Land, M, Liolios, K, Pati, A, Copeland, A, Kyrpides, NC, Ivanova, N, Goodwin, L, Meenakshi, U, Reeve, W (2013) Complete genome sequence of Mesorhizobium ciceri bv. biserrulae type strain (WSM1271T ). Stand Genomic Sci 9: pp. 1944-3277
    19. Nandasena, KG, O'Hara, GW, Tiwari, RP, Willems, A, Howieson, JG (2009) Mesorhizobium australicum sp. nov. and Mesorhizobium opportunistum sp. nov., isolated from Biserrula pelecinus L. in Australia. Int J Syst Evol Microbiol 59: pp. 2140-2147 CrossRef
    20. Reeve, W, Nandasena, K, Yates, R, Tiwari, R, O鈥橦ara, G, Ninawi, M, Gu, W, Goodwin, L, Detter, C, Tapia, R, Han, C, Copeland, A, Liolios, K, Chen, A, Markowitz, V, Pati, A, Mavromatis, K, Woyke, T, Kyrpides, N, Ivanova, N, Howieson, J (2013) Complete genome sequence of Mesorhizobium australicum type strain (WSM2073T). Stand Genomic Sci 9: pp. 410-419 CrossRef
    21. Reeve, WG, Nandasena, K, Yates, R, Tiwari, R, O'Hara, G, Ninawi, M, Chertkov, O, Goodwin, L, Bruce, D, Detter, C, Tapia, R, Han, S, Woyke, T, Pitluck, S, Nolan, M, Land, M, Copeland, A, Liolios, K, Pati, A, Mavromatis, K, Markowitz, V, Kyrpides, N, Ivanova, N, Goodwin, L, Meenakshi, U, Howieson, J (2013) Complete genome sequence of Mesorhizobium opportunistum type strain WSM2075T. Stand Genomic Sci 9: pp. 1944-3277
    22. Krzywinski, M, Schein, J, Birol, I, Connors, J, Gascoyne, R, Horsman, D, Jones, SJ, Marra, MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19: pp. 1639-1645 CrossRef
    23. Salama, N, Guillemin, K, McDaniel, TK, Sherlock, G, Tompkins, L, Falkow, S (2000) A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc Natl Acad Sci 97: pp. 14668-14673 CrossRef
    24. Darling, AE, Mau, B, Perna, NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5: pp. e11147 CrossRef
    25. Zeng, X, Pei, J, Vergara, IA, Nesbitt, M, Wang, K, Chen, N (2008) OrthoCluster: a new tool for mining synteny blocks and applications in comparative genomics. Proceedings of the 11th international conference on Extending database technology: Advances in database technology. ACM, Nantes, France, pp. 656-667
    26. Ng, MP, Vergara, IA, Frech, C, Chen, Q, Zeng, X, Pei, J, Chen, N (2009) OrthoClusterDB: an online platform for synteny blocks. BMC Bioinformatics 10: pp. 192 CrossRef
    27. Xu, Z, Hao, B (2009) CVTree update: a newly designed phylogenetic study platform using composition vectors and whole genomes. Nucleic Acids Res 37: pp. W174-W178 CrossRef
    28. Yang, S, Tang, F, Gao, M, Krishnan, HB, Zhu, H (2010) R gene-controlled host specificity in the legume鈥搑hizobia symbiosis. Proc Natl Acad Sci 107: pp. 18735-18740 CrossRef
    29. Kirzinger, MW, Stavrinides, J (2012) Host specificity determinants as a genetic continuum. Trends Microbiol 20: pp. 88-93 CrossRef
    30. Fauvart, M, Michiels, J (2008) Rhizobial secreted proteins as determinants of host specificity in the Rhizobium鈥搇egume symbiosis. FEMS Microbiol Lett 285: pp. 1-9 CrossRef
    31. Catoira, R, Galera, C, de Billy, F, Penmetsa, RV, Journet, EP, Maillet, F, Rosenberg, C, Cook, D, Gough, C, Denarie, J (2000) Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. Plant Cell 12: pp. 1647-1666 CrossRef
    32. Dilworth, MJ, James, EK, Sprent, JI, Newton, WE (2010) Nitrogen-fixing Leguminous Symbioses.
    33. Janczarek, M, Kutkowska, J, Piersiak, T, Skorupska, A (2010) Rhizobium leguminosarum bv. trifolii rosR is required for interaction with clover, biofilm formation and adaptation to the environment. BMC Microbiol 10: pp. 284 CrossRef
    34. Schmeisser, C, Liesegang, H, Krysciak, D, Bakkou, N, Le Quere, A, Wollherr, A, Heinemeyer, I, Morgenstern, B, Pommerening-Roser, A, Flores, M, Palacios, R, Brenner, S, Gottschalk, G, Schmitz, RA, Broughton, WJ, Perret, X, Strittmatter, AW, Streit, WR (2009) Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems. Appl Environ Microbiol 75: pp. 4035-4045 CrossRef
    35. Sanchez, C, Iannino, F, Deakin, WJ, Ugalde, RA, Lepek, VC (2009) Characterization of the Mesorhizobium loti MAFF303099 type-three protein secretion system. Mol Plant Microbe Interact 22: pp. 519-528 CrossRef
    36. Records, AR (2011) The type VI secretion system: a multipurpose delivery system with a phage-like machinery. Mol Plant Microbe Interact 24: pp. 751-757 CrossRef
    37. Dobrindt, U, Hochhut, B, Hentschel, U, Hacker, J (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2: pp. 414-424 CrossRef
    38. Carver, TJ, Rutherford, KM, Berriman, M, Rajandream, MA, Barrell, BG, Parkhill, J (2005) ACT: the Artemis comparison tool. Bioinformatics 21: pp. 3422-3423 CrossRef
    39. Kurtz, S, Phillippy, A, Delcher, AL, Smoot, M, Shumway, M, Antonescu, C, Salzberg, SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5: pp. R12 CrossRef
    40. Langille, MG, Brinkman, FS (2009) IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics 25: pp. 664-665 CrossRef
    41. Antonenka, U (2007) Factors and Mechanisms of Mobility of the High Pathogenicity Island of Yersinia.
    42. Welch, RA, Burland, V, Plunkett, G, Redford, P, Roesch, P, Rasko, D, Buckles, EL, Liou, SR, Boutin, A, Hackett, J, Stroud, D, Mayhew, GF, Rose, DJ, Zhou, S, Schwartz, DC, Perna, NT, Mobley, HL, Donnenberg, MS, Blattner, FR (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 99: pp. 17020-17024 CrossRef
    43. Slater, SC, Goldman, BS, Goodner, B, Setubal, JC, Farrand, SK, Nester, EW, Burr, TJ, Banta, L, Dickerman, AW, Paulsen, I, Otten, L, Suen, G, Welch, R, Almeida, NF, Arnold, F, Burton, OT, Du, Z, Ewing, A, Godsy, E, Heisel, S, Houmiel, KL, Jhaveri, J, Lu, J, Miller, NM, Norton, S, Chen, Q, Phoolcharoen, W, Ohlin, V, Ondrusek, D, Pride, N (2009) Genome sequences of three agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. J Bacteriol 191: pp. 2501-2511 CrossRef
    44. Fox, GE, Wisotzkey, JD, Jurtshuk, P (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42: pp. 166-170 CrossRef
    45. Maurelli, AT, Fernandez, RE, Bloch, CA, Rode, CK, Fasano, A (1998) 鈥淏lack holes鈥?and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc Natl Acad Sci U S A 95: pp. 3943-3948 CrossRef
    46. Glockner, G, Albert-Weissenberger, C, Weinmann, E, Jacobi, S, Schunder, E, Steinert, M, Hacker, J, Heuner, K (2008) Identification and characterization of a new conjugation/type IVA secretion system (trb/tra) of Legionella pneumophila Corby localized on two mobile genomic islands. Int J Med Microbiol 298: pp. 411-428 CrossRef
    47. Schuldes, J, Rodriguez Orbegoso, M, Schmeisser, C, Krishnan, HB, Daniel, R, Streit, WR (2012) Complete genome sequence of the broad-host-range strain Sinorhizobium fredii USDA257. J Bacteriol 194: pp. 4483 CrossRef
    48. Rogel, MA, Orme帽o-Orrillo, E, Martinez Romero, E (2011) Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst Appl Microbiol 34: pp. 96-104 CrossRef
    49. Dai, WJ, Zeng, Y, Xie, ZP, Staehelin, C (2008) Symbiosis-promoting and deleterious effects of NopT, a novel type 3 effector of Rhizobium sp. strain NGR234. J Bacteriol 190: pp. 5101-5110 CrossRef
    50. Moulin, L, Bena, G, Boivin-Masson, C, Stepkowski, T (2004) Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Mol Phylogenet Evol 30: pp. 720-732 CrossRef
    51. Schechter, LM, Guenther, J, Olcay, EA, Jang, S, Krishnan, HB (2010) Translocation of NopP by Sinorhizobium fredii USDA257 into Vigna unguiculata root nodules. Appl Environ Microbiol 76: pp. 3758-3761 CrossRef
    52. Itakura, M, Saeki, K, Omori, H, Yokoyama, T, Kaneko, T, Tabata, S, Ohwada, T, Tajima, S, Uchiumi, T, Honnma, K, Fujita, K, Iwata, H, Saeki, Y, Hara, Y, Ikeda, S, Eda, S, Mitsui, H, Minamisawa, K (2009) Genomic comparison of Bradyrhizobium japonicum strains with different symbiotic nitrogen-fixing capabilities and other Bradyrhizobiaceae members. ISME J 3: pp. 326-339 CrossRef
    53. Benedek, O, Schubert, S (2007) Mobility of the Yersinia High-Pathogenicity Island (HPI): transfer mechanisms of pathogenicity islands (PAIS) revisited (a review). Acta Microbiol Immunol Hung 54: pp. 89-105 CrossRef
    54. Luo, R, Liu, B, Xie, Y, Li, Z, Huang, W, Yuan, J, He, G, Chen, Y, Pan, Q, Liu, Y, Tang, J, Wu, G, Zhang, H, Shi, Y, Liu, Y, Yu, C, Wang, B, Lu, Y, Han, C, Cheung, DW, Yiu, SM, Peng, S, Xiaoqian, Z, Liu, G, Liao, X, Li, Y, Yang, H, Wang, J, Lam, TW, Wang, J (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1: pp. 18 CrossRef
    55. Delcher, AL, Harmon, D, Kasif, S, White, O, Salzberg, SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27: pp. 4636-4641 CrossRef
    56. Lagesen, K, Hallin, P, Rodland, EA, Staerfeldt, HH, Rognes, T, Ussery, DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35: pp. 3100-3108 CrossRef
    57. Lowe, TM, Eddy, SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25: pp. 0955-0964 CrossRef
    58. Marchler-Bauer, A, Zheng, C, Chitsaz, F, Derbyshire, MK, Geer, LY, Geer, RC, Gonzales, NR, Gwadz, M, Hurwitz, DI, Lanczycki, CJ, Lu, F, Lu, S, Marchler, GH, Song, JS, Thanki, N, Yamashita, RA, Zhang, D, Bryant, SH (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41: pp. D348-352 CrossRef
    59. Zdobnov, EM, Apweiler, R (2001) InterProScan鈥揳n integration platform for the signature-recognition methods in InterPro. Bioinformatics 17: pp. 847-848 CrossRef
    60. Kanehisa, M, Goto, S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: pp. 27-30 CrossRef
    61. Bairoch, A, Apweiler, R (2000) The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 28: pp. 45-48 CrossRef
    62. Li, L, Stoeckert, CJ, Roos, DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13: pp. 2178-2189 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Evidence based on genomic sequences is urgently needed to confirm the phylogenetic relationship between Mesorhizobium strain MAFF303099 and M. huakuii. To define underlying causes for the rather striking difference in host specificity between M. huakuii strain 7653R and MAFF303099, several probable determinants also require comparison at the genomic level. An improved understanding of mobile genetic elements that can be integrated into the main chromosomes of Mesorhizobium to form genomic islands would enrich our knowledge of how genome dynamics may contribute to Mesorhizobium evolution in general. Results In this study, we sequenced the complete genome of 7653R and compared it with five other Mesorhizobium genomes. Genomes of 7653R and MAFF303099 were found to share a large set of orthologs and, most importantly, a conserved chromosomal backbone and even larger perfectly conserved synteny blocks. We also identified candidate molecular differences responsible for the different host specificities of these two strains. Finally, we reconstructed an ancestral Mesorhizobium genomic island that has evolved into diverse forms in different Mesorhizobium species. Conclusions Our ortholog and synteny analyses firmly establish MAFF303099 as a strain of M. huakuii. Differences in nodulation factors and secretion systems T3SS, T4SS, and T6SS may be responsible for the unique host specificities of 7653R and MAFF303099 strains. The plasmids of 7653R may have arisen by excision of the original genomic island from the 7653R chromosome.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700