Genome-wide analysis of regulatory proteases sequences identified through bioinformatics data mining in Taenia solium
详细信息    查看全文
  • 作者:Hong-Bin Yan (18) (19)
    Zhong-Zi Lou (18)
    Li Li (18)
    Paul J Brindley (19)
    Yadong Zheng (18)
    Xuenong Luo (18)
    Junling Hou (18)
    Aijiang Guo (18)
    Wan-Zhong Jia (18)
    Xuepeng Cai (18)

    18. State Key Laboratory of Veterinary Etiological Biology
    ; Key Laboratory of Veterinary Parasitology of Gansu Province ; Key Laboratory of Veterinary Public Health of Agriculture Ministry ; Lanzhou Veterinary Research Institute ; Chinese Academy of Agricultural Sciences ; Lanzhou ; 730046 ; Gansu Province ; PR China
    19. Department of Microbiology
    ; Immunology & Tropical Medicine ; and Research Center for Neglected Diseases of Poverty ; School of Medicine & Health Sciences ; The George Washington University ; Washington ; DC ; USA
  • 关键词:Proteases ; Taenia solium ; Drug target ; Vaccine candidate antigen ; Genome ; wide analysis ; Cysticercosis ; Platyhelminth
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:611 KB
  • 参考文献:1. Assana, E, Lightowlers, MW, Zoli, AP, Geerts, S (2013) Taenia solium taeniosis/cysticercosis in Africa: risk factors, epidemiology and prospects for control using vaccination. Vet Parasitol 195: pp. 14-23
    2. Krecek, RC, Michael, LM, Schantz, PM, Ntanjana, L, Smith, MF, Dorny, P, Harrison, LJS, Grimm, F, Praeth, N, Willingham, AL (2011) Prevalence of Taenia solium cysticercosis in swine from a community-based study in 21 villages of the Eastern Cape Province, South Africa (vol 154, pg 38, 2008). Vet Parasitol 183: pp. 198-200
    3. Bride, PM (1880) Contributions to the pathology of the internal ear. J Anat Physiol 14: pp. 195-200
    4. Lightowlers, MW (2010) Eradication of Taenia solium cysticercosis: a role for vaccination of pigs. Int J Parasitol 40: pp. 1183-1192
    5. Cai, X, Yuan, G, Zheng, Y, Luo, X, Zhang, S, Ding, J, Jing, Z, Lu, C (2008) Effective production and purification of the glycosylated TSOL18 antigen, which is protective against pig cysticercosis. Infect Immun 76: pp. 767-770
    6. Lightowlers, MW (2013) Control of Taenia solium taeniasis/cysticercosis: past practices and new possibilities. Parasitology 140: pp. 1566-1577
    7. Klemba, M, Goldberg, DE (2002) Biological roles of proteases in parasitic protozoa. Annu Rev Biochem 71: pp. 275-305
    8. Hirano, K, Yufu, T, Hirano, M, Nishimura, J, Kanaide, H (2004) Regulatory mechanism for the expression of protease-activated receptors: A role of small G proteins. J Pharmacol Sci 94: pp. 64p
    9. Turk, B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5: pp. 785-799
    10. Faust, DM, Guillen, N (2012) Virulence and virulence factors in Entamoeba histolytica, the agent of human amoebiasis. Microbes Infect 14: pp. 1428-1441
    11. McKerrow, JH, Caffrey, C, Kelly, B, Loke, P, Sajid, M (2006) Proteases in parasitic diseases. Annu Rev Pathol 1: pp. 497-536
    12. Bos, DH, Mayfield, C, Minchella, DJ (2009) Analysis of regulatory protease sequences identified through bioinformatic data mining of the Schistosoma mansoni genome. BMC Genomics 10: pp. 488
    13. Caffrey, CR, Britton, C, McKerrow, JH Chapter 445 - Helminth Cysteine Proteases. In: Rawlings, ND, Salvesen, G eds. (2013) Handbook of Proteolytic Enzymes, Volume 2. Academic Press, London, pp. 1949-1957
    14. Santivanez, SJ, Hernandez-Gonzalez, A, Chile, N, Oleaga, A, Arana, Y, Palma, S, Verastegui, M, Gonzalez, AE, Gilman, R, Garcia, HH, Siles-Lucas, M (2010) Proteomic study of activated Taenia solium oncospheres. Mol Biochem Parasitol 171: pp. 32-39
    15. Li, AH, Moon, SU, Park, YK, Na, BK, Hwang, MG, Oh, CM, Cho, SH, Kong, Y, Kim, TS, Chung, PR (2006) Identification and characterization of a cathepsin L-like cysteine protease from Taenia solium metacestode. Vet Parasitol 141: pp. 251-259
    16. Leon, N, Padilla, C, Pajuelo, M, Sheen, P, Zimic, M (2013) Cathepsin L cysteine protease from Taenia solium: its biological role in the infection and potential use for the immunodiagnosis of neurocysticercosis. Rev Peru Med Exp Salud Publica 30: pp. 446-454
    17. Zimic, M, Pajuelo, M, Gilman, RH, Gutierrez, AH, Rueda, LD, Flores, M, Chile, N, Verastegui, M, Gonzalez, A, Garcia, HH, Sheen, P (2012) The highly antigenic 53/25聽kDa Taenia solium protein fraction with cathepsin-L like activity is present in the oncosphere/cysticercus and induces non-protective IgG antibodies in pigs. Vet Immunol Immunopathol 145: pp. 171-178
    18. Rueda, A, Sifuentes, C, Gilman, RH, Gutierrez, AH, Pina, R, Chile, N, Carrasco, S, Larson, S, Mayta, H, Verastegui, M, Rodriguez, S, Guti茅rrez-Correa, M, Garc铆a, HH, Sheen, P, Zimic, M (2011) TsAg5, a Taenia solium cysticercus protein with a marginal trypsin-like activity in the diagnosis of human neurocysticercosis. Mol Biochem Parasitol 180: pp. 115-119
    19. Baig, S, Damian, RT, Morales-Montor, J, Ghaleb, A, Baghdadi, A, White, AC (2006) Protection from murine cysticercosis by immunization with a parasite cysteine protease. Microbes Infect 8: pp. 2733-2735
    20. Baig, S, Damian, RT, Molinari, JL, Tato, P, Morales-Montor, J, Welch, M, Talhouk, J, Hashmeys, R, White, AC (2005) Purification and characterization of a metacestode cysteine proteinase from Taenia solium involved in the breakdown of human IgG. Parasitology 131: pp. 411-416
    21. Tsai, IJ, Zarowiecki, M, Holroyd, N, Garciarrubio, A, Sanchez-Flores, A, Brooks, KL, Tracey, A, Bobes, RJ, Fragoso, G, Sciutto, E, Aslett, M, Beasley, H, Bennett, HM, Cai, J, Camicia, F, Clark, R, Cucher, M, De Silva, N, Day, TA, Deplazes, P, Estrada, K, Fern谩ndez, C, Holland, PW, Hou, J, Hu, S, Huckvale, T, Hung, SS, Kamenetzky, L, Keane, JA, Kiss, F (2013) The genomes of four tapeworm species reveal adaptations to parasitism. Nature 496: pp. 57-63
    22. Southan, CUM, Barnes, MR (2007) A bioinformatics perspective on genetics in drug discovery and development. John Wiley & Sons, West Sussex
    23. Puente, XS, Sanchez, LM, Overall, CM, Lopez-Otin, C (2003) Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 4: pp. 544-558
    24. Lightowlers, MW (2006) Vaccines against cysticercosis and hydatidosis: foundations in taeniid cestode immunology. Parasitol Int 55: pp. S39-S43
    25. Vercruysse, J, Schetters, TP, Knox, DP, Willadsen, P, Claerebout, E (2007) Control of parasitic disease using vaccines: an answer to drug resistance?. Rev Sci Tech 26: pp. 105-115
    26. Sussman, F, Villaverde, MC, Dominguez, JL, Danielson, UH (2012) On the active site protonation state in aspartic proteases: implications for drug design. Curr Pharm Des 19: pp. 4257-4275
    27. Davies, DR (1990) The structure and function of the aspartic proteinases. Annu Rev Biophys Biophys Chem 19: pp. 189-215
    28. Zwolinska, K (2006) Retroviruses-derived sequences in the human genome. Human endogenous retroviruses (HERVs). Postepy Hig Med Dosw 60: pp. 637-652
    29. Santos, AL, Braga-Silva, LA (2013) Aspartic protease inhibitors: effective drugs against the human fungal pathogen Candida albicans. Mini Rev Med Chem 13: pp. 155-162
    30. Coombs, GH, Goldberg, DE, Klemba, M, Berry, C, Kay, J, Mottram, JC (2001) Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets. Trends Parasitol 17: pp. 532-537
    31. Brindley, PJ, Kalinna, BH, Wong, JY, Bogitsh, BJ, King, LT, Smyth, DJ, Verity, CK, Abbenante, G, Brinkworth, RI, Fairlie, DP, Smythe, ML, Milburn, PJ, Bielefeldt-Ohmann, H, Zheng, Y, McManus, DP (2001) Proteolysis of human hemoglobin by schistosome cathepsin D. Mol Biochem Parasitol 112: pp. 103-112
    32. Zhao, G, Zhou, A, Lv, G, Meng, M, Sun, M, Bai, Y, Han, Y, Wang, L, Zhou, H, Cong, H, Zhao, Q, Zhu, XQ, He, S (2013) Toxoplasma gondii cathepsin proteases are undeveloped prominent vaccine antigens against toxoplasmosis. BMC Infect Dis 13: pp. 207
    33. Furukawa, A, Nakada-Tsukui, K, Nozaki, T (2013) Cysteine protease-binding protein family 6 mediates the trafficking of amylases to phagosomes in the enteric protozoan Entamoeba histolytica. Infect Immun 81: pp. 1820-1829
    34. Sajid, M, McKerrow, JH (2002) Cysteine proteases of parasitic organisms. Mol Biochem Parasitol 120: pp. 1-21
    35. Delcroix, M, Sajid, M, Caffrey, CR, Lim, KC, Dvorak, J, Hsieh, I, Bahgat, M, Dissous, C, McKerrow, JH (2006) A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J Biol Chem 281: pp. 39316-39329
    36. Pinlaor, P, Kaewpitoon, N, Laha, T, Sripa, B, Kaewkes, S, Morales, ME, Mann, VH, Parriott, SK, Suttiprapa, S, Robinson, MW, To, J, Dalton, JP, Loukas, A, Brindley, PJ (2009) Cathepsin F cysteine protease of the human liver fluke, Opisthorchis viverrini. PLoS Negl Trop Dis 3: pp. e398
    37. Smooker, PM, Jayaraj, R, Pike, RN, Spithill, TW (2010) Cathepsin B proteases of flukes: the key to facilitating parasite control?. Trends Parasitol 26: pp. 506-514
    38. Smith, MA, Schnellmann, RG (2012) Calpains, mitochondria, and apoptosis. Cardiovasc Res 96: pp. 32-37
    39. Ohta, N, Kumagai, T, Maruyama, H, Yoshida, A, He, Y, Zhang, R (2004) Research on calpain of Schistosoma japonicum as a vaccine candidate. Parasitol Int 53: pp. 175-181
    40. Siddiqui, AA, Phillips, T, Charest, H, Podesta, RB, Quinlin, ML, Pinkston, JR, Lloyd, JD, Pompa, J, Villalovos, RM, Paz, M (2003) Enhancement of Sm-p80 (large subunit of calpain) induced protective immunity against Schistosoma mansoni through co-delivery of interleukin-2 and interleukin-12 in a DNA vaccine formulation. Vaccine 21: pp. 2882-2889
    41. Min, DY, Lee, YA, Ryu, JS, Ahn, MH, Chung, YB, Sim, S, Shin, MH (2004) Caspase-3-mediated apoptosis of human eosinophils by the tissue-invading helminth Paragonimus westermani. Int Arch Allergy Immunol 133: pp. 357-364
    42. Yuan, J, Shaham, S, Ledoux, S, Ellis, HM, Horvitz, HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75: pp. 641-652
    43. Grutter, MG (2000) Caspases: key players in programmed cell death. Curr Opin Struct Biol 10: pp. 649-655
    44. Lee, EF, Young, ND, Lim, NT, Gasser, RB, Fairlie, WD (2014) Apoptosis in schistosomes: toward novel targets for the treatment of schistosomiasis. Trends Parasitol 30: pp. 75-84
    45. Venero, JL, Burguillos, MA, Joseph, B (2013) Caspases playing in the field of neuroinflammation: old and new players. Dev Neurosci 35: pp. 88-101
    46. Nhan, TQ, Liles, WC, Schwartz, SM (2006) Physiological functions of caspases beyond cell death. Am J Pathol 169: pp. 729-737
    47. Mohapatra, AD, Kumar, S, Satapathy, AK, Ravindran, B (2011) Caspase dependent programmed cell death in developing embryos: a potential target for therapeutic intervention against pathogenic nematodes. PLoS Negl Trop Dis 5: pp. e1306
    48. MacKenzie, SH, Schipper, JL, Clark, AC (2010) The potential for caspases in drug discovery. Curr Opin Drug Discov Devel 13: pp. 568-576
    49. Servida, F, Lecis, D, Scavullo, C, Drago, C, Seneci, P, Carlo-Stella, C, Manzoni, L, Polli, E, Lambertenghi Deliliers, G, Delia, D, Onida, F (2011) Novel second mitochondria-derived activator of caspases (Smac) mimetic compounds sensitize human leukemic cell lines to conventional chemotherapeutic drug-induced and death receptor-mediated apoptosis. Invest New Drugs 29: pp. 1264-1275
    50. Yao, T, Song, L, Xu, W, DeMartino, GN, Florens, L, Swanson, SK, Washburn, MP, Conaway, RC, Conaway, JW, Cohen, RE (2006) Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat Cell Biol 8: pp. 994-1002
    51. Chung, CH, Baek, SH (1999) Deubiquitinating enzymes: their diversity and emerging roles. Biochem Biophys Res Commun 266: pp. 633-640
    52. Quesada, V, Diaz-Perales, A, Gutierrez-Fernandez, A, Garabaya, C, Cal, S, Lopez-Otin, C (2004) Cloning and enzymatic analysis of 22 novel human ubiquitin-specific proteases. Biochem Biophys Res Commun 314: pp. 54-62
    53. Cadinanos, J, Schmidt, WK, Fueyo, A, Varela, I, Lopez-Otin, C, Freije, JMP (2003) Identification, functional expression and enzymic analysis of two distinct CaaX proteases from Caenorhabditis elegans. Biochem J 370: pp. 1047-1054
    54. Cai, GB, Bae, YA, Kim, SH, Na, BK, Kim, TS, Jiang, MS, Kong, Y (2006) A membrane-associated metalloprotease of Taenia solium metacestode structurally related to the FACE-1/Ste24p protease family. Int J Parasitol 36: pp. 925-935
    55. Rawlings, ND, Barrett, AJ, Bateman, A (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 40: pp. D343-D350
    56. Knight, PJK, Knowles, BH, Ellar, DJ (1995) Molecular cloning of an insect aminopeptidase-N that serves as a receptor for Bacillus thuringiensis Cryia(C) toxin. J Biol Chem 270: pp. 17765-17770
    57. Gakh, E, Cavadini, P, Isaya, G (2002) Mitochondrial processing peptidases. BBA-Mol Cell Res 1592: pp. 63-77
    58. Wolfson, AJ, Sigman, JA, Stadelmann, LE, Leong, R, Mann-Stadt, CF, Kannabiran, DR, Glucksman, MJ (2005) Substrate specificity of thimet oligopeptidase (EC3.4.24.15) depends on loop flexibility. Febs J 272: pp. 183
    59. Lee, SF, Srinivasan, B, Sephton, CF, Dries, DR, Wang, B, Yu, C, Wang, Y, Dewey, CM, Shah, S, Jiang, J, Yu, G (2011) Gamma-secretase-regulated proteolysis of the Notch receptor by mitochondrial intermediate peptidase. J Biol Chem 286: pp. 27447-27453
    60. Tatsuta, T, Langer, T (2009) AAA proteases in mitochondria: diverse functions of membrane-bound proteolytic machines. Res Microbiol 160: pp. 711-717
    61. Day, TA, Chen, GZ (1998) The metalloprotease inhibitor 1,10-phenanthroline affects Schistosoma mansoni motor activity, egg laying and viability. Parasitology 116: pp. 319-325
    62. Lal, M, Caplan, M (2011) Regulated intramembrane proteolysis: signaling pathways and biological functions. Physiology 26: pp. 34-44
    63. Zelenski, NG, Rawson, RB, Brown, MS, Goldstein, JL (1999) Membrane topology of S2P, a protein required for intramembranous cleavage of sterol regulatory element-binding proteins. J Biolo Chem 274: pp. 21973-21980
    64. Polg谩r, L Chapter 560 鈥?Catalytic mechanisms of serine and threonine peptidases. In: Rawlings, ND, Salvesen, G eds. (2013) Handbook of Proteolytic Enzymes, Volume 3. Academic Press, London, pp. 2524-2534
    65. Xu, H, Shan, J, Jurukovski, V, Yuan, L, Li, J, Tian, K (2007) TSP50 encodes a testis-specific protease and is negatively regulated by p53. Cancer Res 67: pp. 1239-1245
    66. Ekici, OD, Paetzel, M, Dalbey, RE (2008) Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration. Protein Sci 17: pp. 2023-2037
    67. Brown, MS, Goldstein, JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232: pp. 34-47
    68. May, P, Woldt, E, Matz, RL, Boucher, P (2007) The LDL receptor-related protein (LRP) family: an old family of proteins with new physiological functions. Ann Med 39: pp. 219-228
    69. Leigh, S, Whittall, RA, Humphries, SE (2008) Update and analysis of the UCL low density lipoprotein receptor gene (LDLR) familial hypercholesterolaemia (FH) database. J Med Genet 45: pp. S71
    70. Beuming, T, Niv, MY, Skrabanek, LA, Mukherjee, P, Ceruso, M, Weinstein, H (2005) Specific PDZ-peptide interactions identified with PDZBase - a database of PDZ-domain mediated protein-protein interactions. Biophys J 88: pp. 219a
    71. Sheng, M, Sala, C (2001) PDZ domains and the organization of supramolecular complexes. Annu Rev of Neurosci 24: pp. 1-29
    72. Weiss, N, Kokot, A, Luger, TA, Weishaupt, C, Bohm, M (2011) Subtilisin-kexin isoenzyme-1-a novel player in melanoma biology. Pigment Cell Melanoma Res 24: pp. 861
    73. Tomkinson, B, Lindas, AC (2005) Tripeptidyl-peptidase II: a multi-purpose peptidase. Int J Biochem Cell Biol 37: pp. 1933-1937
    74. Brenner, C, Fuller, RS (1992) Structural and enzymatic characterization of a purified prohormone-processing enzyme: secreted, soluble Kex2 protease. Proc Natl Acad Sci U S A 89: pp. 922-926
    75. Hernandez-Romano, P, Hernandez, R, Arroyo, R, Alderete, JF, Lopez-Villasenor, I (2010) Identification and characterization of a surface-associated, subtilisin-like serine protease in Trichomonas vaginalis. Parasitology 137: pp. 1621-1635
    76. Tiberti, M, Papaleo, E (2011) Dynamic properties of extremophilic subtilisin-like serine-proteases. J Struct Biol 174: pp. 69-83
    77. Barth, AI, Nathke, IS, Nelson, WJ (1997) Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Curr Opin Cell Biol 9: pp. 683-690
    78. Alberts, B (2002) Molecular biology of the cell. Garland Science, New York
    79. Oda, H, Takeichi, M (2011) Evolution Structural and functional diversity of cadherin at the adherens junction. J Cell Biol 193: pp. 1137-1146
    80. Stenflo, J, Stenberg, Y, Muranyi, A (2000) Calcium-binding EGF-like modules in coagulation proteinases: function of the calcium ion in module interactions. Biochim Biophys Acta 1477: pp. 51-63
    81. Urban, S, Lee, JR, Freeman, M (2001) Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107: pp. 173-182
    82. Wang, YC, Zhang, YJ, Ha, Y (2006) Crystal structure of a rhomboid family intramembrane protease. Nature 444: pp. 179-183
    83. Maki, M, Maemoto, Y, Osako, Y, Shibata, H (2012) Evolutionary and physical linkage between calpains and penta-EF-hand Ca2+-binding proteins. Febs J 279: pp. 1414-1421
    84. Snider, J, Houry, WA (2008) AAA鈥?鈥塸roteins: diversity in function, similarity in structure. Biochem Soc Trans 36: pp. 72-77
    85. Lu, B, Liu, T, Crosby, JA, Thomas-Wohlever, J, Lee, I, Suzuki, CK (2003) The ATP-dependent Lon protease of Mus musculus is a DNA-binding protein that is functionally conserved between yeast and mammals. Gene 306: pp. 45-55
    86. Golde, TE, Wolfe, MS, Greenbaum, DC (2009) Signal peptide peptidases: a family of intramembrane-cleaving proteases that cleave type 2 transmembrane proteins. Semin Cell Deve Biol 20: pp. 225-230
    87. Lowe, J, Stock, D, Jap, B, Zwickl, P, Baumeister, W, Huber, R (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268: pp. 533-539
    88. Hendil, KB, Kriegenburg, F, Tanaka, K, Murata, S, Lauridsen, AMB, Johnsen, AH, Hartmann-Petersen, R (2009) The 20S Proteasome as an Assembly Platform for the 19S Regulatory Complex. J Mol Biol 394: pp. 320-328
    89. Hsieh, JJD, Cheng, EHY, Korsmeyer, SJ (2003) Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell 115: pp. 293-303
    90. Rawlings, ND, Barrett, AJ, Bateman, A (2010) MEROPS: the peptidase database. Nucleic Acids Res 38: pp. D227-D233
    91. Rawlings, ND, Morton, FR (2008) The MEROPS batch BLAST: a tool to detect peptidases and their non-peptidase homologues in a genome. Biochimie 90: pp. 243-259
    92. Marchler-Bauer, A, Bryant, SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32: pp. W327-W331
    93. Marchler-Bauer, A, Anderson, JB, Chitsaz, F, Derbyshire, MK, DeWeese-Scott, C, Fong, JH, Geer, LY, Geer, RC, Gonzales, NR, Gwadz, M, He, S, Hurwitz, DI, Jackson, JD, Ke, Z, Lanczycki, CJ, Liebert, CA, Liu, C, Lu, F, Lu, S, Marchler, GH, Mullokandov, M, Song, JS, Tasneem, A, Thanki, N, Yamashita, RA, Zhang, D, Zhang, N, Bryant, SH (2009) CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37: pp. D205-D210
    94. Marchler-Bauer, A, Lu, S, Anderson, JB, Chitsaz, F, Derbyshire, MK, DeWeese-Scott, C, Fong, JH, Geer, LY, Geer, RC, Gonzales, NR, Gwadz, M, Hurwitz, DI, Jackson, JD, Ke, Z, Lanczycki, CJ, Lu, F, Marchler, GH, Mullokandov, M, Omelchenko, MV, Robertson, CL, Song, JS, Thanki, N, Yamashita, RA, Zhang, D, Zhang, N, Zheng, C, Bryant, SH (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39: pp. D225-D229
    95. Marchler-Bauer, A, Zheng, CJ, Chitsaz, F, Derbyshire, MK, Geer, LY, Geer, RC, Gonzales, NR, Gwadz, M, Hurwitz, DI, Lanczycki, CJ, Lu, F, Lu, S, Marchler, GH, Song, JS, Thanki, N, Yamashita, RA, Zhang, D, Bryant, SH (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41: pp. D348-D352
    96. Letunic, I, Doerks, T, Bork, P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40: pp. D302-D305
    97. Punta, M, Coggill, PC, Eberhardt, RY, Mistry, J, Tate, J, Boursnell, C, Pang, N, Forslund, K, Ceric, G, Clements, J, Heger, A, Holm, L, Sonnhammer, EL, Eddy, SR, Bateman, A, Finn, RD (2012) The Pfam protein families database. Nucleic Acids Res 40: pp. D290-D301
    98. Finn, RD, Mistry, J, Tate, J, Coggill, P, Heger, A, Pollington, JE, Gavin, OL, Gunasekaran, P, Ceric, G, Forslund, K, Holm, L, Sonnhammer, EL, Eddy, SR, Bateman, A (2010) The Pfam protein families database. Nucleic Acids Res 38: pp. D211-D222
    99. Tatusov, RL, Fedorova, ND, Jackson, JD, Jacobs, AR, Kiryutin, B, Koonin, EV, Krylov, DM, Mazumder, R, Mekhedov, SL, Nikolskaya, AN, Rao, BS, Smirnov, S, Sverdlov, AV, Vasudevan, S, Wolf, YI, Yin, JJ, Natale, DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinforma 4: pp. 41
    100. Moriya, Y, Itoh, M, Okuda, S, Yoshizawa, AC, Kanehisa, M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35: pp. W182-W185
    101. Krogh, A, Larsson, B, von Heijne, G, Sonnhammer, EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305: pp. 567-580
    102. Kahsay, RY, Gao, G, Liao, L (2005) An improved hidden Markov model for transmembrane protein detection and topology prediction and its applications to complete genomes. Bioinformatics 21: pp. 1853-1858
    103. Petersen, TN, Brunak, S, von Heijne, G, Nielsen, H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8: pp. 785-786
    104. Emanuelsson, O, Brunak, S, von Heijne, G, Nielsen, H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2: pp. 953-971
    105. Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F, Higgins, DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: pp. 4876-4882
    106. Ronquist, F, Huelsenbeck, JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: pp. 1572-1574
    107. Jia, W, Yan, H, Lou, Z, Ni, X, Dyachenko, V, Li, H, Littlewood, DT (2012) Mitochondrial genes and genomes support a cryptic species of tapeworm within Taenia taeniaeformis. Acta Trop 123: pp. 154-163
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Cysticercosis remains a major neglected tropical disease of humanity in many regions, especially in sub-Saharan Africa, Central America and elsewhere. Owing to the emerging drug resistance and the inability of current drugs to prevent re-infection, identification of novel vaccines and chemotherapeutic agents against Taenia solium and related helminth pathogens is a public health priority. The T. solium genome and the predicted proteome were reported recently, providing a wealth of information from which new interventional targets might be identified. In order to characterize and classify the entire repertoire of protease-encoding genes of T. solium, which act fundamental biological roles in all life processes, we analyzed the predicted proteins of this cestode through a combination of bioinformatics tools. Functional annotation was performed to yield insights into the signaling processes relevant to the complex developmental cycle of this tapeworm and to highlight a suite of the proteases as potential intervention targets. Results Within the genome of this helminth parasite, we identified 200 open reading frames encoding proteases from five clans, which correspond to 1.68% of the 11,902 protein-encoding genes predicted to be present in its genome. These proteases include calpains, cytosolic, mitochondrial signal peptidases, ubiquitylation related proteins, and others. Many not only show significant similarity to proteases in the Conserved Domain Database but have conserved active sites and catalytic domains. KEGG Automatic Annotation Server (KAAS) analysis indicated that ~60% of these proteases share strong sequence identities with proteins of the KEGG database, which are involved in human disease, metabolic pathways, genetic information processes, cellular processes, environmental information processes and organismal systems. Also, we identified signal peptides and transmembrane helices through comparative analysis with classes of important regulatory proteases. Phylogenetic analysis using Bayes approach provided support for inferring functional divergence among regulatory cysteine and serine proteases. Conclusion Numerous putative proteases were identified for the first time in T. solium, and important regulatory proteases have been predicted. This comprehensive analysis not only complements the growing knowledge base of proteolytic enzymes, but also provides a platform from which to expand knowledge of cestode proteases and to explore their biochemistry and potential as intervention targets.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700