Chemosensory genes identified in the antennal transcriptome of the blowfly Calliphora stygia
详细信息    查看全文
  • 作者:Olivia Leitch (1) (2)
    Alexie Papanicolaou (3) (5)
    Chris Lennard (1) (6)
    K Paul Kirkbride (4)
    Alisha Anderson (2)

    1. National Centre for Forensic Studies
    ; University of Canberra ; Canberra ; Australia
    2. CSIRO Division of Ecosystem Sciences and Food Futures Flagship
    ; Canberra ; Australia
    3. CSIRO Land and Water Flagship
    ; Canberra ; Australia
    5. Current Address
    ; Hawkesbury Institute for the Environment ; University of Western Sydney ; Richmond ; Australia
    6. Current Address
    ; School of Science and Health ; University of Western Sydney ; Penrith ; Australia
    4. School of Chemical and Physical Sciences
    ; Flinders University ; Bedford Park ; Australia
  • 关键词:Calliphora stygia ; Blowfly olfaction ; Transcriptome ; Chemosensory proteins ; Odorant receptors
  • 刊名:BMC Genomics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:3,634 KB
  • 参考文献:1. Kurtovic, A, Widmer, A, Dickson, B (2007) A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 466: pp. 542-6
    2. Becher, P, LFlick, G, Rozpedowska, E, Schmidt, A, Hagman, A, Lebreton, S (2012) Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol 26: pp. 822-8
    3. Birkett, MA, Agelopoulos, N, Jensen, K-MV, Jespersen, JB, Pickett, JA, Prijs, HJ (2004) The role of volatile semiochemicals in mediating host location and selection by nuisance and disease-transmitting cattle flies. Med Vet Entomol 18: pp. 313-22
    4. Stensmyr, M, Dweck, H, Farhan, A, Ibba, I, Strutz, A, Mukunda, L (2012) A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151: pp. 1345-57
    5. Ashworth, J, Wall, R (1994) Responses of the sheep blowflies Lucilia sericata and L. cuprina to odour and the development of semiochemical baits. Med Vet Entomol 8: pp. 303-9
    6. Byrd, J, Castner, J Insects of forensic importance. In: Byrd, J, Castner, J eds. (2009) Forensic entomology: the utility of arthropods in legal investigations. CRC Press, Boca Raton, FL, pp. 39-126
    7. LeBlanc, H, Logan, J Exploiting insect olfaction in forensic entomology. In: Amendt, J, Goff, M, Campobasso, C, Grassberger, M eds. (2010) Current concepts in forensic entomology. Springer, New York, NY, pp. 205-22
    8. Amendt, J, Goff, M, Campobasso, C, Grassberger, M (2010) Current concepts in forensic entomology. Springer, New York, NY
    9. Aak, A, Birkemoe, T, Mehl, R (2010) Blowfly (Diptera: Calliphoridae) damage on stockfish in northern Norway: pest species, damage assessment, and the potential of mass trapping. J Pest Sci 83: pp. 329-37
    10. Fraser, A, Broom, D (1990) Farm animal behaviour and welfare. Tindall, London
    11. Green, A (1951) The control of blowflies infesting slaughter-houses I: field observations of the habits of blowflies. Ann Appl Biol 38: pp. 475-94
    12. Paul, A, Ahmad, N, Lee, H, Ariff, A, Saranum, M, Maicker, A (2009) Maggot debridement therapy with Lucilia cuprina: a comparison with conventional debridement in diabetic foot ulcers. Int Wound J 6: pp. 39-46
    13. Tantawi, T, Williams, K, Villet, M (2010) An accidental but safe and effective use of Lucilia cuprina (Diptera: Calliphoidae) in maggot debridement therapy in Alexandria, Egypt. J Med Entomol 47: pp. 491-4
    14. Dekeirsschieter, J, Verheggen, FJ, Gahy, M, Hubrecht, F, Bourguignon, L, Lognay, G (2009) Cadaveric volatile organic compounds released by decaying pig carcasses (Sus domesticus L.) in different biotopes. Forensic Sci Int 189: pp. 46-53
    15. H盲drich, C, Ortmann, C, Reisch, R, Liebing, G, Ahlers, H, Mall, G (2010) An electronic body-tracking dog?. Int J Legal Med 124: pp. 43-7
    16. Paczkowski, S, Maibaum, F, Paczkowska, M, Sch眉tz, S (2012) Decaying mouse volatiles percieved by Calliphora vicina Rob.-Desc. J Forensic Sci 57: pp. 1497-506
    17. Statheropoulos, M, Spiliopoulou, C, Agapiou, A (2005) A study of volatile organic compounds evolved from the decaying human body. Forensic Sci Int 153: pp. 147-55
    18. Vass, AA, Barshick, S-A, Sega, G, Caton, J, Skeen, JT, Love, JC (2002) Decomposition chemistry of human remains: a new methodology for determining the postmortem interval. J Forensic Sci 47: pp. 542-53
    19. Vass, AA, Smith, RR, Thompson, CV, Burnett, MN, Dulgerian, N, Eckenrode, BA (2008) Odor analysis of decomposing buried human remains. J Forensic Sci 53: pp. 384-91
    20. Vass, AA, Smith, RR, Thompson, CV, Burnett, MN, Wolf, DA, Synstelien, JA (2004) Decompositional odor analysis database. J Forensic Sci 49: pp. 1-10
    21. Anderson, GS Insect succession on carrion and its relationship to determining time of death. In: Byrd, JH, Castner, JL eds. (2001) Forensic entomology: the utility of arthropods in legal investigations. CRC Press LLC, U.S.A, pp. 143-75
    22. Aak, A, Knudsen, G (2011) Sex differences in olfaction-mediated visual acuity in blowflies and its consequences for gender-specific trapping. Entomol Exp et Applicata 139: pp. 25-34
    23. Frederickx, CE, Dekeirsschieter, J, Verheggen, FJ, Haubruge, E (2012) Responses of Lucilia sericata Meigen (Diptera: Calliphoridae) to cadaveric volatile organic compounds. J Forensic Sci 57: pp. 386-90
    24. Huotari, M, Mela, M (1996) Blowfly olfactory biosensor鈥檚 sensitivity and specificity. Sensors Actuators B 34: pp. 240-4
    25. Kelling, F, Biancaniello, G, Otter, C (2002) Electrophysiological characterization of olfactory cell types in the antennae and palps of the housefly. J Insect Physiol 48: pp. 997-1008
    26. Wasserman, S, Itagaki, H (2003) The olfactory responses of the antenna and maxillary palp of the fleshfly, Neobelliera bullata (Diptera: Sarcophagidae), and their sensitivity to blockage of nitric oxide synthase. J Insect Physiol 49: pp. 271-80
    鈥淪tandard test method for ignitable liquid residues in extracts from fire debris samples by gas chromatography-mass spectrometry鈥? ASTM International, West Conshohocken, PA
    27. Hoffman, EM, Curran, AM, Dulgerian, N, Stockham, RA, Eckenrode, BA (2009) Characterisation of the volatile organic compounds present in the headspace of decomposing human remains. Forensic Sci Int 186: pp. 6-13
    28. Statheropoulos, M, Agapiou, A, Zorba, E, Mikedi, K, Karma, S, Pallis, GC (2011) Combined chemical and optical methods for monitoring the early decay stages of surrogate human models. Forensic Sci Int 210: pp. 154-63
    29. Stensmyr, M, Urru, I, Collu, I, Celander, M, Hansson, BS, Angioy, A-M (2002) Rotting smell of dead-horse arum florets. Nature 420: pp. 625-6
    30. Coss茅, AA, Baker, TC (1996) House flies and pig manure volatiles: wind tunnel behavioural studies and electrophysiological evaluations. J Agri Entomol 13: pp. 301-17
    31. Park, KC, Cork, A (1999) Electrophysiological responses of antennal receptor neurons in female Australian sheep blowflies, Lucilia cuprina, to host odours. J Insect Physiol 45: pp. 85-91
    32. Zhu, J, Chaudhury, MF, Tangtrakulwanich, K, Skoda, SR (2013) Identification of oviposition attractants of the secondary screwworm, Cochliomyia macellaria (F.) released from rotten chicken liver. J Chem Ecol 39: pp. 1407-14
    33. Hallem, E, Ho, M, Carlson, JR (2004) The molecular basis of odor coding in the Drosophila antenna. Cell 117: pp. 965-79
    34. Clyne, PJ, Warr, CG, Freeman, M, Lessing, D, Kim, JW, Carlson, JR (1999) A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22: pp. 327-38
    35. Jones, WD, Cayirlioglu, P, Kadow, IG, Vosshall, LB (2007) Two chemosensory receptors together mediate carbon dioxide detecion in Drosophila. Nature 445: pp. 86-90
    36. Vosshall, LB, Stocker, R (2007) Molecular architecture of smell and taste in Drosophila. Annu Rev Neurosci 30: pp. 505-33
    37. Benton, R, Vannice, KS, Gomez-Diaz, C, Vosshall, LB (2009) Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 136: pp. 149-62
    38. Benton, R, Vannice, K, Vosshall, LB (2007) An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450: pp. 289-93
    39. Jin, X, Ha, T, Smith, D (2008) SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc Natl Acad Sci 105: pp. 10996-1001
    40. Kaissling, K (2001) Olfactory perireceptor and receptor events in moths: a kinetic model. Chem Senses 26: pp. 125-50
    41. Leal, W, Chen, A, Ishida, Y, Chiang, V, Erickson, M, Morgan, T (2005) Kinetics and molecular properties of pheromone binding and release. Proc Natl Acad Sci 102: pp. 5386-91
    42. Bohbot, J, Sobrio, F, Lucas, P, Magnan-Le Meillour, P (1998) Functional characterization of a new class of odorant-binding proteins in the moth Mamestra brassicae. Biochem Biophys Res Commun 253: pp. 489-94
    43. Pelosi, P, Zhou, J, Ban, L, Calvello, M (2006) Soluble proteins in insect chemical communication. Cell Mol Life Sci 63: pp. 1658-76
    44. Vogt, R Biochemical diversity of odor detection: OBPs, ODEs and SNMPs. In: Blomquist, G, Vogt, R eds. (2003) Insect pheromone biochemistry and molecular biology. Academic, San Diego, pp. 391-445
    45. Martin, F, Boto, T, Gomez-Diaz, C, Alcorta, E (2013) Elements of olfactory reception in adult Drosophila melanogaster. Anotomical Record 296: pp. 1477-88
    46. Oakeshott, J, Claudianos, C, Campbell, P, Newcomb, RD, Russell, R Biochemical genetic and genomics of insect esterases. In: Gillbert, L, Iatrou, K, Gill, S eds. (2005) Comprehensive Molecular Insect Science. Elsevier Ltd, Amsterdam, pp. 309-81
    47. Fox, A, Pitts, R, Robertson, H, Carlson, JR, Zwiebel, L (2001) Candidate odor receptors from the malaria vector mosquito, Anopheles gambiae. Proc Natl Acad Sci 98: pp. 14693-7
    48. Zhou, X, Slone, J, Rokas, A, Berger, S, Leibig, J, Ray, A (2012) Phylogenetic and transcriptomic analysis of chemosensory receptors in a pair of divergent ant species reveals sex-specific signatures of odor coding. PLoS Genet 8: pp. 1-17
    49. Andersson, MN, Grosse-Wilde, E, Keeling, CI, Bengtsson, JM, Yuen, MMS, Li, M (2013) Antennal transcriptome analysis of the chemosensory gene families in the tree kiling dark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae). BMC Genomics 14: pp. 1-16
    50. Bengtsson, JM, Trona, F, Montagn茅, N, Anfora, G, Ignall, R, Witzgall, P (2012) Putative chemosensory receptors of the codling moth, Cydia pomonella, identified by antennal transcriptome analysis. PLoS One 7: pp. 1-11
    51. Glaser, N, Gallot, A, Legeai, F, Montagn茅, N, Poivet, E, Harry, M (2013) Candidate chemosensory genes in the stemborer Sesamia nonagrioides. Int J Biol Sci 9: pp. 481-95
    52. Legeai, F, Malpel, S, Montagn茅, N, Monsempes, C, Cousserans, F, Merlin, C (2011) An expressed sequence tag collection from the male antennae of the Noctuid moth Spodoptera littoralis: a resource for olfactory and pheromone detection research. BMC Genomics 12: pp. 1-18
    53. Vera, J, Wheat, C, Fescemyer, H, Frilander, M, Crawford, D, Hanski, I (2008) Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 17: pp. 1636-47
    54. Vogel, H, Heidel, A, Heckel, D, Groot, A (2010) Transcriptome analysis of the sex pheromone gland of the noctuid moth Heliothis virescens. BMC Genomics 11: pp. 1-21
    55. Wang, K-W, Luan, J-B, Li, J-M, Bao, Y-Y, Zhang, C-X, Lui, S-S (2010) De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genomics 11: pp. 1-11
    56. Lee, S, Chen, Z, McGrath, A, Good, R, Batterham, P (2011) Identification, analysis, and linkage mapping of expressed sequence tags from the Australian sheep blowfly. BMC Genomics 12: pp. 1-13
    57. Wang, X, Zhong, M, Wen, J, Cai, J, Jiang, H, Liu, Y (2011) Molecular characterization and expression pattern of an odorant receptor from the myiasis-causing blowfly, Lucilia sericata (Diptera: Calliphoridae). Parasitol Res 110: pp. 843-51
    U.S. National Library of Medicine.
    58. Krieger, J, Klink, O, Mohl, C, Raming, K, Breer, H (2003) A candidate olfactory receptor subtype highly conserved across different insect orders. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189: pp. 519-26
    59. Olafson, P (2013) Molecular characterization and immunolocalization of the olfactory co-receptor Orco from two blood-feeding muscid flies, the stable fly (Stomoxys calcitrans, L.) and the horn fly (Haematobia irritans irritans, L.). Insect Mol Biol 22: pp. 131-42
    60. Olafson, P, Lohmeyer, K, Dowd, S (2010) Analysis of expressed sequence tags from a significant livestock pest, the stable fly (Stromoxys calcitrans), identifies transcripts with a putative role in chemosensation and sex determination. Arch Insect Biochem Physiol 74: pp. 179-204
    61. Wang, X, Zhong, M, Liu, Q, Sanaa, MA, Wu, C, Wen, J (2013) Molecular characterization of the carbon dioxide receptor in the oriental latrine fly, Chrysomya megacephala (Dipters: Calliphoridae). Parasitol Res 112: pp. 2763-71
    62. Norris, KR The ecology of sheep blowflies in Australia. In: Keast, A, Crocker, RL, Christian, CS eds. (1959) Biogeography and Ecology in Australia. Uitgeverij Dr. W. Junk, Den Haag
    63. George, KA, Archer, M, Green, LM, Conlan, XA, Toop, T (2009) Effect of morphine on the growth rate of Calliphora stygia (Fabricius) (Diptera: Calliphoridae) and possible implications for forensic entomology. Forensic Sci Int 193: pp. 21-5
    64. Hulbert, AJ, Usher, MJ, Wallman, JF (2004) Food consumption and individual lifespan of adults of the blowfly, Calliphora stygia: a test of the 鈥榬ate of living鈥?theory of aging. Exp Gerontol 39: pp. 1485-90
    65. Parry, S, Linton, SM, Francis, PS, O鈥橠onnell MJ, MJ, Toop, T (2011) Accumulation and excretion of morphine by Calliphora stygia, and Australian blow fly species of forensic importance. J Insect Physiol 57: pp. 62-73
    66. Ujvari, B, Wallman, JF, Madsen, T, Whelan, M, Hulbert, AJ (2009) Experimental studies of blowfly (Calliphora stygia) longevity: a little dietary fat is beneficial but too much is detrimental. Comp Biochem Physiol A 154: pp. 383-8
    67. Clyne, PJ, Warr, CG, Carlson, JR (2000) Candidate taste receptors in Drosophila. Science 287: pp. 1830-4
    68. Kwon, J, Dahanukar, A, Weiss, LA, Carlson, JR (2007) The molecular basis of CO2 reception in Drosophila. Proc Natl Acad Sci 104: pp. 3574-8
    69. Ni, L, Bronk, P, Chang, EC, Lowell, AM, Flam, JO, Panzano, VC (2013) A gustatory receptor paralogue controls rapid warmth avoidance in Drosophila. Nat Lett 500: pp. 580-885
    70. Slone, J, Daniels, J, Amrein, H (2007) Sugar receptors in Drosophila. Curr Biol 17: pp. 1809-16
    71. Croset, V, Rytz, R, Cummins, SF, Budd, A, Brawand, D, Kaessmann, H (2010) Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet 6: pp. 1-20
    72. Shanbhag, S, M眉ller, B, Steinbrecht, R (1999) Atlas of olfactory organs of Drosophila melanogaster 1. Types, external organization, innervation and distribution of olfactory sensilla. Int J Insect Morphol Embryol 28: pp. 377-97
    73. Abuin, L, Bargeton, B, Ulbrich, MH, Isacoff, EY, Kellenberger, S, Benton, R (2011) Functional architecture of olfactory ionotropic glutamate receptors. Neuron 69: pp. 44-60
    74. Hekmat-Scafe, D, Scafe, C, McKinney, A, Tanouye, M (2002) Genome-wide analysis of the odorant-binding protein gene familiy in Drosophila melanogaster. Genome Res 12: pp. 1357-69
    75. S谩nchez-Gracia, A, Vieira, F, Rozas, J (2009) Molecular evolution of the major chemosensory gene families in insects. Heredity 103: pp. 208-16
    76. Jacquin-Joly, E, Legeai, F, Montagn茅, N, Monsempes, C, Fran莽ois, M-C, Poulain, J (2012) Candidate chemosensory genes in female antennae of the noctuid moth Spodoptera littoralis. Int J Biol Sci 8: pp. 1036-50
    77. Kim, M-S, Repp, A, Smith, DP (1998) LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster. Genetics Soc Am 150: pp. 711-21
    78. Xu, P, Zwiebel, L, Smith, DP (2003) Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol 12: pp. 549-60
    79. Feyereisen, R (2006) Evolution of insect P450. Biochem Soc Trans 34: pp. 1252-5
    80. Feyereisen, R Insect CYP genes and P450 enzymes. In: Gilbert, LI eds. (2012) Insect molecular biology and biochemistry. Academic, San Diego, pp. 236-316
    81. Jackson, CJ, Lui, J-W, Carr, PD, Younus, F, Coppin, C, Meirelles, T, Lethier, M, Pandey, G, Ollis, DL, Russell, RJ, Weik, M, Oakeshott, JG (2013) Structure and function of an insect 伪-carboxylesterase (伪Esterase7) associated with insecticide resistnace. Proc Natl Acad Sci 110: pp. 10177-82
    82. Newcomb, RD (1997) A single amino acid substitution converts a carboxylesterase to an organophosphorous hydrolase and confers insecticide resistance on a blowfly. Proc Natl Acad Sci 94: pp. 7464-8
    83. Daborn, P, Boundy, S, Yen, J, Pittendrigh, B, Ffrench-Constant, R (2001) DDT resistance in Drosophila correlates with Cyp6g1 over-expression and confers cross-resistance to the neonicotinoid imidacloprid. Mol Gen Genomics 266: pp. 556-63
    84. Grosse-Wilde, E, Kuebler, LS, Bucks, S, Vogel, H, Wicher, D, Hansson, BS (2012) Antennal transcriptome of Manduca sexta. Proc Natl Acad Sci 108: pp. 7449-54
    85. Zhang, M, Yu, H, Yang, Y, Song, C, Hu, X, Zhang, G (2013) Analysis of the transcriptome of blowfly Chrysomya megacephala (Fabricius) larvae in response to different edible oils. PLoS One 8: pp. 1-11
    86. Liu, Y, Gu, S, Zhang, Y, Guo, Y, Wang, G (2012) Candidate olfaction genes identified within the Helicoverpa armigera antennal transcriptome. PLoS One 7: pp. 1-16
    87. Mitchell, R, Hughes, D, Leutje, C, Millar, J, Soriano-Agat贸n, F, Hanks, L (2012) Sequencing and characterizing odorant receptors of the cerambycid beetle Megacyllene caryae. Insect Biochem Mol Biol 42: pp. 499-505
    88. Pitts, RJ, Rinker, DC, Jones, PL, Rokas, A, Zwiebel, LJ (2011) Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding. BMC Genomics 12: pp. 1-17
    89. Riveron, J, Boto, T, Alcorta, E (2013) Transcriptional basis of the acclimation to high environmental temperature at the olfactory receptor organs of Drosophila melanogaster. BMC Genomics 14: pp. 1-16
    90. Poivet, E, Gallot, A, Montagn茅, N, Glaser, N, Legeai, F, Jacquin-Joly, E (2013) A comparison of the olfactory gene repertoirs of adult and larvae in the noctuid moth Spodoptera littoralis. PLoS One 8: pp. 1-15
    91. Rytz, R, Croset, V, Benton, R (2013) Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond. Insect Biochem Mol Biol 43: pp. 888-97
    92. Briscoe, A, Macias-Mu帽oz, A, Kozak, K, Walters, J, Yaun, F, Jamie, G (2013) Female behaviour drives expression and evolution of gustatory receptors in butterflies. PLoS Genet 9: pp. 1-16
    93. Benton, R (2008) Chemical sensing in Drosophila. Curr Opin Neurobiol 18: pp. 357-63
    94. Montell, C (2013) Gustatory receptors: not just for good taste. Curr Biol 23: pp. R929-32
    95. Yao, CA, Ingnell, R, Carlson, JR (2005) Chemosensory coding by neurons in the coeloconic sensilla of the Drosophila antenna. J Neurosci 25: pp. 8359-67
    96. Cooke, M, Leeves, N, White, C (2003) Time profile of putrescine, cadaverine, indole and skatole in human saliva. Arch Oral Biol 48: pp. 323-7
    97. Andersson, MN, Videvall, E, Walden, K, Harris, MO, Robertson, H, L枚fstedt, C (2014) Sex- and tissue-specific profiles of chemosensory gene expression in herbivorous gall-inducing fly (Diptera: Cecidomyiidae). BMC Genomics 15: pp. 1-19
    98. Rinker, DC, Zhou, X, Pitts, RJ, Consortium, TA, Rokas, A, Zwiebel, LJ (2013) Antennal transcriptome profiles of anopheline mosquitoes reveal human host olfactory specialization in Anopheles gambiae. BMC Genomics 14: pp. 1-15
    99. Dekeirsschieter, J, Frederick, CE, Lognay, G, Brostaux, Y, Berheggen, FJ, Haubruge, E (2013) Electrophysiological and behavioral responses of Thanatophilus sinuatus Fabricius (Coleoptera: Silphidae) to selected cadaveric volatile organic compounds. J Forensic Sci 58: pp. 917-23
    100. Aak, A, Knudsen, GK, Soleng, A (2010) Wind tunnel behavioural response and field trapping of the blowfly Calliphora vicina. Med Vet Entomol 24: pp. 250-7
    101. Archer, M, Elgar, MA (2003) Female breeding-site preferences and larval feeding strategies of carrion-breeding Calliphoridae and Sarcophagidae (Diptera): a quantitative analysis. Aust J Zool 51: pp. 165-74
    102. Wall, R, Green, CH, French, N, Morgan, KL (1992) Development of an attractive target for the sheep blow fly Lucilia sericata. Med Vet Entomol 6: pp. 67-74
    103. Ejima, A, Smith, B, Lucas, C, van der Goes van Naters, W, Miller, C, Carlson, J (2007) Generalization of courtship learning in Drosophila in mediated by cis-vaccenyl acetate. Curr Biol 17: pp. 599-605
    104. Uebel, EC, Sonnet, PE, Bierl, BA, Miller, RW (1975) Sex pheromone of the stable fly: isolation and preliminary identification of compounds that induce mating strike behavior. J Chem Ecol 1: pp. 377-85
    105. Uebel, EC, Sonnet, PE, Miller, RW, Beroza, M (1975) Sex pheromone of the face fly, Musca autumnalis De Geer (Diptera: Muscidae). J Chem Ecol 1: pp. 195-202
    106. Carlson, DA, Mayer, MS, Silhacek, DL, James, JD, Beroza, M (1971) Sex attractant pheromone of the house fly: isolation, identifcation and synthesis. Science 174: pp. 76-8
    107. George, K, Archer, M, Toop, T (2012) Effects of bait age, larval chemical cues and nutrient depletion on colonization by forensically important callihorid and sarcophagid flies. Med Vet Entomol 26: pp. 188-93
    108. Grabherr, M, Haas, B, Yassour, M, Levin, J, Thompson, D, Amit, I (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29: pp. 644-52
    109. Haas, B, Papanicolaou, A, Yassour, M, Grabherr, M, Blood, P, Bowden, J (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8: pp. 1494-512
    Digital expression on the web.
    110. Langmead, B, Salzberg, L (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: pp. 357-9
    111. Forster, SC, Finkel, AM, Gould, JA, Hertzog, PJ (2013) RNA-eXpress annotated novel transcript features in RNA-seq data. Bioinformatics 29: pp. 810-2
    112. Conesa, A, G枚tz, S, Garc铆a-G贸mez, J, Terol, J, Tal贸n, M, Robles, M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: pp. 3674-6
    113. G枚tz, S, Garc铆a-G贸mez, J, Terol, J, Williams, T, Nagaraj, S, Nueda, M (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36: pp. 3420-35
    114. Quevillon, E, Silventoinen, V, Pillai, S, Harte, N, Mulder, N, Apweiler, R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33: pp. W116-20
    115. K盲ll, L, Krogh, A, Sonnhammer, E (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338: pp. 1027-36
    116. Gou, S, Kim, JW (2007) Molecular evolution of Drosophila odorant receptor genes. Mol Biol Evol 24: pp. 1198-207
    117. Katoh, K, Misawa, K, Kuma, K-I, Miyata, T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30: pp. 3059-66
    118. Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M, Kumar, S (2011) MEGA5: molecular evolution genetics analysis using maximum liklihood evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: pp. 2731-9
    119. Rambaut, A (2007) FigTree, v1.4.
    120. Inkscape. v.0.48.4. 2013. http://inkscape.org.
    121. Megy K, Emrich SJ, Lawson D, Campbell D, Dialynas E, Hughes DST, et al. VectorBase: improvements to a bioinformatics resource for invertebrate vector genomics. Nucleic Acids Res. 2012; 40(D1): p. D729-D34. doi:10.1093/nar/gkr1089.
    122. Marygold, S, Leyland, P, Seal, R, Goodman, J, Thurmond, J, Strelets, V (2013) FlyBase improvements to the bibliography. Nucleic Acids Res 41: pp. D751-7
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Blowflies have relevance in areas of forensic science, agriculture, and medicine, primarily due to the ability of their larvae to develop on flesh. While it is widely accepted that blowflies rely heavily on olfaction for identifying and locating hosts, there is limited research regarding the underlying molecular mechanisms. Using next generation sequencing (Illumina), this research examined the antennal transcriptome of Calliphora stygia (Fabricius) (Diptera: Calliphoridae) to identify members of the major chemosensory gene families necessary for olfaction. Results Representative proteins from all chemosensory gene families essential in insect olfaction were identified in the antennae of the blowfly C. stygia, including 50 odorant receptors, 22 ionotropic receptors, 21 gustatory receptors, 28 odorant binding proteins, 4 chemosensory proteins, and 3 sensory neuron membrane proteins. A total of 97 candidate cytochrome P450s and 39 esterases, some of which may act as odorant degrading enzymes, were also identified. Importantly, co-receptors necessary for the proper function of ligand-binding receptors were identified. Putative orthologues for the conserved antennal ionotropic receptors and candidate gustatory receptors for carbon dioxide detection were also amongst the identified proteins. Conclusions This research provides a comprehensive novel resource that will be fundamental for future studies regarding blowfly olfaction. Such information presents potential benefits to the forensic, pest control, and medical areas, and could assist in the understanding of insecticide resistance and targeted control through cross-species comparisons.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700