Enhanced trans-resveratrol production in genetically transformed root cultures of Peanut (Arachis hypogaea L.)
详细信息    查看全文
  • 作者:Mihir Halder ; Sumita Jha
  • 关键词:Agrobacterium rhizogenes ; Arachis hypogaea ; Transformed root culture ; Rol genes ; Trans ; resveratrol
  • 刊名:Plant Cell, Tissue and Organ Culture
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:124
  • 期:3
  • 页码:555-572
  • 全文大小:3,869 KB
  • 参考文献:Akasaka Y, Mii M, Daimon H (1998) Morphological alterations and root nodule formation in Agrobacterium rhizogenes-mediated transgenic hairy roots of peanut (Arachis hypogaea L.). Ann Bot 81:355–362CrossRef
    Almagro L, Belchı´-Navarro S, Sabater-Jara A, Vera-Urbina JC, Selle´s-Marchart S, Bru R, Pedren˜o MA (2013) Bioproduction of trans-resveratrol from grapevine cell cultures. In: Ramawat KG, Merillon JM (eds) Handbook of natural products. Springer, Berlin, pp 1683–1713CrossRef
    Alpizar E, Dechamp E, Lapeyre-Montes F, Guilhaumon C, Bertrand B, Jourdan C, Lashermes P, Etienne H (2008) Agrobacterium rhizogenes-transformed roots of Coffee (Coffea arabica): conditions for long-term proliferation, and morphological and molecular characterization. Ann Bot 101:929–940PubMedCentral CrossRef PubMed
    Aoki T, Matsumoto H, Asako Y, Matsunaga Y, Shimomura K (1997) Variation of alkaloid productivity among several clones of hairy roots and regenerated plants of Atropa belladonna transformed with Agrobacterium rhizogenes 15834. Plant Cell Rep 16:282–286
    Batra J, Dutta A, Singh D, Kumar S, Sen J (2004) Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left- and right-termini-linked Ri T-DNA gene integration. Plant Cell Rep 23:148–154CrossRef PubMed
    Baur JA, Pearson KJ, Price NL et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nat 444:337–342CrossRef
    Bishi SK, Lokesh K, Mahatma MK, Khatediya N, Chauhan SM, Misra JB (2015) Quality traits of Indian peanut cultivars and their utility as nutritional and functional food. Food Chem 167:107–114CrossRef PubMed
    Bonhomme V, Laurain-Mattar D, Lacoux J, Fliniaux M, Dubreuil AJ (2000) Tropane alkaloid production by hairy roots of Atropa belladonna obtained after transformation with Agrobacterium rhizogenes 15834 and Agrobacterium tumefaciens containing rol A, B, C genes only. J Biotechnol 81:151–158CrossRef PubMed
    Camont L, Cottart CH, Rhayem Y, Nivet-Antoine V, Djelidi R, Collin F, Beaudeux JL, Bonnefont-Rousselot D (2009) Simple spectrophotometric assessment of the trans-/cis-resveratrol ratio in aqueous solutions. Anal Chim Acta 634:121–128CrossRef PubMed
    Cardarelli M, Spano L, Mariotti D, Mauro ML, Van Sluys MA, Constantino P (1985) Identification of the genetic locus responsible for non-polar root induction by Agrobacterium rhizogenes. Plant Mol Biol 5:385–391CrossRef PubMed
    Chandra S (2012) Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism. Biotechnol Lett 34:407–415CrossRef PubMed
    Chandran RP, Potty VP (2008) Induction of hairy roots through the mediation of four strains of Agrobacterium rhizogenes on five host plants. Indian J Biotechnol 7:122–128
    Chaudhuri KN, Ghosh B, Tepfer D, Jha S (2005) Genetic transformation of Tylophora indica with Agrobacterium rhizogenes A4: growth and tylophorine productivity in different transformed root clones. Plant Cell Rep 24:25–35CrossRef PubMed
    Chen RS, Wu PL, Chiou RYY (2002) Peanut roots as a source of resveratrol. J Agric Food Chem 50:1665–1667CrossRef PubMed
    Chen Y, Tseng SH, Lai HS, Chen WJ (2004) Resveratrol-induced cellular apoptosis and cell cycle arrest in neuroblastoma cells and antitumor effects on neuroblastoma in mice. Surgery 136:57–66CrossRef PubMed
    Chen X, He H, Wang G, Yang B, Ren W, Ma L, Yu Q (2007) Stereospecific determination of cis- and trans-resveratrol in rat plasma by HPLC: application to pharmacokinetic studies. Biomed Chromatogr 21:257–265CrossRef PubMed
    Christensen B, Sriskandarajah S, Serek M, Müller R (2008) Transformation of Kalanchoe blossfeldiana with rol-genes is useful in molecular breeding towards compact growth. Plant Cell Rep 27:1485–1495CrossRef PubMed
    Condori J, Sivakumar G, Hubstenberger J, Dolan MC, Sobolev VS, Medina-Bolivar F (2010) Induced biosynthesis of resveratrol and the prenylated stilbenoids arachidin-1 and arachidin-3 in hairy root cultures of peanut: effects of culture medium and growth stage. Plant Physiol Biochem 48:310–318CrossRef PubMed
    Delmas D, Lançon A, Colin D, Jannin B, Latruffe N (2006) Resveratrol as a chemopreventive agent: a promising molecule for fighting cancer. Curr Drug Targets 7:423–442CrossRef PubMed
    Deus B, Zenk MH (1982) Exploitation of plant cells for the production of natural compounds. Biotechnol Bioeng 24:1965–1974CrossRef PubMed
    Elmali N, Baysal O, Harma A, Esenkaya I, Mizrak B (2007) Effects of resveratrol in inflammatory arthritis. Inflammation 30:1–2CrossRef PubMed
    Frémont L (2000) Biological effects of resveratrol. Life Sci 66:663–673CrossRef PubMed
    Geng L, Niu L, Gresshoff PM, Shu C, Song F, Huang D, Zhang J (2012) Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants in peanut (Arachis hypogaea L.). Plant Cell Tiss Organ Cult 109:491–500CrossRef
    Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185CrossRef PubMed
    Guillon S, Jocelyne TG, Pati PK, Marc R, Pascal G (2006) Harnessing the potential of hairy roots: dawn of a new era. Trends Biotechnol 24:403–409CrossRef PubMed
    Gupta R, Pandey P, Singh S, Singh DK, Saxena A, Luqman S, Bawankule DU, Banerjee S (2015) Advances in Boerhaavia diffusa hairy root technology: a valuable pursuit for identifying strain sensitivity and up-scaling factors to refine metabolite yield and bioactivity potentials. Protoplasma. doi:10.​1007/​s00709-015-0875-5
    Holden PR, Holden MA, Yeoman MM (1988) Variation in the secondary metabolism of cultured plant cells. In: Robins RJ, Rhodes MJC (eds) Manipulating secondary metabolism in culture. Cambridge University Press, Cambridge, pp 15–29
    Hooykaas PJ, Klapwjik PM, Nuit MP, Schilperoot RA, Hirsch A (1977) Transfer of the A. tumifaciens Ti plasmid to avirulent Agrobacteria and Rhizobium ex planta. J Gen Microbiol 98:477–484CrossRef
    Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nat 425:191–196CrossRef
    Hsieh TC, Wu JM (2010) Resveratrol: biological and pharmaceutical properties as anticancer molecule. BioFactors 36:360–369PubMedCentral CrossRef PubMed
    Jeandet P, Cl´ement C, Courot E (2014) Resveratrol production at large scale using plant cell suspensions. Eng Life Sci 14:622–632CrossRef
    Jha S, Bandyopadhyay M, Chaudhuri KN, Ghosh S, Ghosh B (2005) Biotechnological approaches for the production of forskolin, withanolides, colchicine and tylophorine. Plant Genet Resour Charact Util 3:101–115CrossRef
    Jouanin L, Tourneur J, Tourneur C, Casse-Delbart F (1986) Restriction maps and homologies of the three plasmids of Agrobacterium rhizogenes strain A4. Plasmid 16:124–134CrossRef PubMed
    Jouanin L, Guerche D, Pamboukdjian N, Tourneur C, Casse-Delbart F, Tourneur J (1987) Structure of T-DNA in plants regenerated from roots transformed by Agrobacterium rhizogenes strain A4. Mol Gen Genet 206:387–392CrossRef
    Jung G, Tepfer D (1987) Use of genetic transformation by the Ri T-DNA of Agrobacterium rhizogenes to stimulate biomass and tropane alkaloid production in Atropa belladonna and Calystegia sepium roots. Plant Sci 50:145–151CrossRef
    King RE, Bomser JA, Min DB (2006) Bioactivity of resveratrol. Compr Rev Food Sci F 5:65–70CrossRef
    Lan X, Quan H (2010) Hairy root culture of Przewalskia tangutica for enhanced production of pharmaceutical tropane alkaloids. J Med Plants Res 4:1477–1481
    Larronde F, Richard T, Delaunay JC, Decendit A, Monti JP, Krisa S, Mérillon JM (2005) New stilbenoid glucosides isolated from Vitis vinifera cell suspension cultures (cv. Cabernet Sauvignon). Planta Med 71:888–890CrossRef PubMed
    Liu C, Wang L, Wang J, Wu B, Liu W, Fan P, Liang Z, Li S (2013) Resveratrols in Vitis berry skins and leaves: their extraction and analysis by HPLC. Food Chem 136:643–649CrossRef PubMed
    Lyons MM, Yu C, Toma RB, Cho SY, Reiboldt W, Lee J, van Breemen RB (2003) Resveratrol in raw and baked blueberries and bilberries. J Agric Food Chem 51:5867–5870CrossRef PubMed
    Madhusudhanan K, Rahiman BA (2000) The effect of activated charcoal supplemented media to browning of in vitro cultures of Piper species. Biol Plant 43:297–299CrossRef
    Majumdar S, Garai S, Jha S (2011) Genetic transformation of Bacopa monnieri by wild type strains of Agrobacterium rhizogenes stimulates production of bacopasaponins in transformed calli and plants. Plant Cell Rep 30:941–954CrossRef PubMed
    Malovaná S, Montelongo FJG, Pérez JP, Rodríguez-Delgado MA (2001) Optimisation of sample preparation for the determination of trans-resveratrol and other polyphenolic compounds in wines by high performance liquid chromatography. Anal Chim Acta 428:245–253CrossRef
    Medina-Bolivar F, Condori J, Rimando AM, Hubstenberger J, Shelton K, O’Keefe SF, Bennett S, Dolan MC (2007) Production and secretion of resveratrol in hairy root cultures of peanut. Phytochemistry 68:1992–2003CrossRef PubMed
    Montsko G, Nikfardjam MSP, Szabo Z, Boddi K, Lorand T, Ohmacht R, Mark L (2008) Determination of products derived from trans-resveratrol UV photoisomerisation by means of HPLC-APCI-MS. J Photochem Photobiol A Chem 196:44–50CrossRef
    Moore L, Warren G, Strobel G (1979) Involvement of a plasmid in the hairy root disease of plants caused by Agrobacterium rhizogenes. Plasmid 2:617–626CrossRef PubMed
    Moyano E, Fornalé S, Palazón J, Cusidó RM, Bonfill M, Morales C, Piñol MT (1999) Effect of Agrobacterium rhizogenes T-DNA on alkaloid production in Solanaceae plants. Phytochemistry 52:1287–1292CrossRef
    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497CrossRef
    Ono NN, Tian L (2011) The multiplicity of hairy root cultures: prolific possibilities. Plant Sci 180:439–446CrossRef PubMed
    Pan MJ, Staden JV (1998) The use of charcoal in in vitro culture—a review. Plant Growth Regul 26:155–163CrossRef
    Petit A, David C, Dahl GA, Ellis JG, Guyon P, Casse-Delbart F, Tempé J (1983) Further extension of the opine concept: plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Mol Gen Genet 190:204–214CrossRef
    Ray S, Majumder A, Bandyopadhyay M, Jha S (2014) Genetic transformation of sarpagandha (Rauvolfia serpentina) with Agrobacterium rhizogenes for identification of high alkaloid yielding lines. Acta Physiol Plant 36:1599–1605CrossRef
    Rodríguez-Delgado MA, González G, Pérez-Trujillo JP, García-Montelongo FJ (2002) Trans-resveratrol in wines from the Canary Islands (Spain). Analysis by high performance liquid chromatography. Food Chem 76:371–375CrossRef
    Roychowdhury D, Majumder A, Jha S (2013) Agrobacterium rhizogenes-mediated transformation in medicinal plants: prospects and challenges. In: Chandra S, Lata H, Varma A (eds) Biotechnology for medicinal plants. Springer, Berlin, pp 29–66CrossRef
    Roychowdhury D, Basu A, Jha S (2015) Morphological and molecular variation in Ri-transformed root lines are stable in long term cultures of Tylophora indica. Plant Growth Regul 75:443–453CrossRef
    Sales JM, Resurreccion AVA (2014) Resveratrol in peanuts. Crit Rev Food Sci Nutr 54:734–770CrossRef PubMed
    Sanders TH, McMichael RW Jr, Hendrix KW (2000) Occurrence of resveratrol in edible peanuts. J Agric Food Chem 48:1243–1246CrossRef PubMed
    Setamam NM, Sidik NJ, Rahman ZA, Zain CRCM (2014) Induction of hairy roots by various strains of Agrobacterium rhizogenes in different types of Capsicum species explants. BMC Res Notes 7:414–422CrossRef
    Sevón N, Dräger B, Hiltunen R, Oksman-Caldentey KM (1997) Characterization of transgenic plants derived from hairy roots of Hyoscyamus muticus. Plant Cell Rep 16:605–611CrossRef
    Sinharoy S, Saha S, Chaudhury SR, DasGupta M (2009) Transformed hairy roots of Arachis hypogea: a tool for studying root nodule symbiosis in a non-infection thread legume of the Aeschynomeneae tribe. Mol Plant Microbe Interact 22:132–142CrossRef PubMed
    Sivakumar G, Yu KW, Paek KY (2005) Production of biomass and ginsenoides from adventitious roots of Panax ginseng in bioreactor cultures. Eng Life Sci 5:333–342CrossRef
    Sivakumar G, Liu C, Towler MJ, Weathers PJ (2010) Biomass production of hairy roots of Artemisia annua and Arachis hypogaea in a scaled-up mist bioreactor. Biotechnol Bioeng 107:802–813PubMedCentral CrossRef PubMed
    Sokal RR, Rohlf FJ (1987) Introduction to biostatistics. WH Freeman, New York
    Sun AY, Wang Q, Simonyi A, Sun GY (2010) Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol Neurobiol 41:375–383PubMedCentral CrossRef PubMed
    Taneja J, Jaggi M, Wankhede DP, Sinha AK (2010) Effect of loss of T-DNA genes on MIA biosynthetic pathway gene regulation and alkaloid accumulation in Catharanthus roseus hairy roots. Plant Cell Rep 29:1119–1129CrossRef PubMed
    Tepfer D (1984) Genetic transformation of several species of higher plants by Agrobacterium rhizogenes: phenotypic consequences and sexual transmission of the transformed genotype and phenotype. Cell 37:959–967CrossRef PubMed
    Tepfer D (1995) Agrobacterium rhizogenes-mediated transformation: transformed roots to transformed plants. In: Potrykus I, Spangenberg G (eds) Gene transfer to plants. Springer, Berlin, pp 45–52CrossRef
    Tian L (2015) Using hairy roots for production of valuable plant secondary metabolites. In: Advances in biochemical engineering/biotechnology. Springer, Berlin. doi:10.​1007/​10_​2014_​298
    Trela BC, Waterhouse AL (1996) Resveratrol: isomeric molar absorptivities and stability. J Agric Food Chem 44:1253–1257CrossRef
    Verpoorte R, Contin A, Memelink J (2002) Biotechnology for production of plant secondary metabolites. Phytochem Rev 1:13–25CrossRef
    Vervliet G, Holsters M, Teuchy H, Van Montagut M, Schell J (1975) Characterization of different plaque-forming and defective temperate phages in Agrobacterium strains. J Gen Virol 26:33–48CrossRef PubMed
    Wang YM, Wang JB, Luo D, Jia JF (2001) Regeneration of plants from callus cultures of roots induced by Agrobacterium rhizogenes on Alhagi pseudalhagi. Cell Res 11:279–284CrossRef PubMed
    Weatherhead MA, Burdon J, Henshaw GG (1979) Effects of activated charcoal as an additive plant tissue culture media: part 2. Z Pflanzenphysiol 94:399–405CrossRef
    Weathers PJ, Towler MJ, Xu J (2010) Bench to batch: advances in plant cell culture for producing useful products. Appl Microbiol Biotechnol 85:1339–1351CrossRef PubMed
    White FF, Nester EW (1980) Hairy root: plasmid encodes virulence traits in Agrobacterium rhizogenes. J Bacteriol 41:1134–1141
    Xu Q, Si LY (2012) Resveratrol role in cardiovascular and metabolic health and potential mechanisms of action. Nutr Res 32:648–658CrossRef PubMed
    Xu J, Ge X, Dolan MC (2011) Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures. Biotechnol Adv 29:278–299CrossRef PubMed
    Yang T, Fang L, Nopo-Olazabal C, Condori J, Nopo-Olazabal L, Balmaceda C, Medina-Bolivar F (2015) Enhanced production of resveratrol, piceatannol, arachidin-1, and arachidin-3 in hairy root cultures of peanut co-treated with methyl jasmonate and cyclodextrin. J Agric Food Chem 63:3942–3950CrossRef PubMed
  • 作者单位:Mihir Halder (1)
    Sumita Jha (1)

    1. Department of Botany, Center of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700 019, India
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Plant Physiology
  • 出版者:Springer Netherlands
  • ISSN:1573-5044
文摘
In the present study, 30 Ri-transformed root lines of peanut (Arachis hypogaea) cv. JL-24, a popular Indian cultivar, obtained following infection with Agrobacterium rhizogenes strains LBA9402, A4 and R1000 were selected on the basis of growth index and maintained in vitro for 3 years. The root lines showed high degree of branching and rapid, plagiotropic growth on phytohormone free solid N/5 medium but were devoid of root hairs. Trans-resveratrol was isolated by preparative HPLC from Ri-transformed roots and identified by ESI–MS/MS. Strain independent variability was observed among 30 Ri-transformed root lines on the basis of lateral root density per cm (7.60 ± 0.30 to 4.5 ± 0.5), relative thickness (0.54 ± 0.07 to 1.54 ± 0.1 mm), growth index (9.16 ± 1.1 to 17.79 ± 1.35 FW basis and 10.77 ± 0.95 to 19.46 ± 1.78 DW basis) and trans-resveratrol content 0.27 ± 0.03 (root line R1000-1) to 0.969 ± 0.141 mg g DW−1 (root line RIX-19) in solid N/5 medium, which was 4.1–14 fold greater than in excised non-transformed root cultures (0.06 ± 0.01 mg g DW−1). Optimum growth and productivity in liquid culture was achieved in N/5 medium supplemented with 0.01 % activated charcoal. Root line RIX-19 showed maximum trans-resveratrol accumulation (1.21 ± 0.09 mg g DW−1) and productivity (0.37 ± 0.08 mg per flask), which was 19 fold higher than non-transformed root cultures. This optimized protocol can be utilized for large scale cultivation of transformed root cultures in industrial bioreactors for mass synthesis of trans-resveratrol. Keywords Agrobacterium rhizogenes Arachis hypogaea Transformed root culture Rol genes Trans-resveratrol

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700