GPR91: expanding the frontiers of Krebs cycle intermediates
详细信息    查看全文
  • 作者:Matheus de Castro Fonseca ; Carla J. Aguiar
  • 关键词:Succinate ; GPR91 ; Cell functions ; Cell signaling
  • 刊名:Cell Communication and Signaling
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:14
  • 期:1
  • 全文大小:1,747 KB
  • 参考文献:1.Thunberg T. Zur Kenntnis des intermediären Stoffwechsels und der dabei wirksamen. Enzyme Skandinavisches Archiv für Physiologie. 1920;40:1–91.CrossRef
    2.Annan G, Banga I, Blazsó A, Bruckner V, Laki K, Straub B, et al. Über die Bedeutung der Fumarsäure für die tierische Gewebeatmung. Einleitung, übersicht, Methoden Hoppe-Seyler's Zeitschrift für Physiologische Chemie. 1935;236:1–20.
    3.Krebs HA, Johson WA. The role of citric acid in intermediate metabolism in animal tissues. Enzymologia. 1937;4:148–56.
    4.Krebs HA. The history of the tricarboxylic acid cyle. Perspect Biol Med. 1970;14:154–70.PubMed CrossRef
    5.Fedotcheva NI, Sokolov AP, Kondrashova MN. Nonenzymatic formation of succinate in mitochondria under oxidative stress. Free Radic Biol Med. 2006;41:56–64.PubMed CrossRef
    6.Brosnan JT, Krebs HA, Williamson DH. Effects of Ischaemia on Metabolite Concentrations in Rat Liver. Biochent J. 1970;117:91–6.CrossRef
    7.Taegtmeyer H. Metabolic responses to cardiac hypoxia. Increased production of succinate by rabbit papillary muscles. Circ Res. 1978;43:808–15.PubMed CrossRef
    8.Chouchani ET, Pell VR, Gaude E, Aksentijević D, Sundier SY, Robb EL, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515(7527):431–5.PubMed PubMedCentral CrossRef
    9.Knauf F, Rogina B, Jiang Z, Aronson PS, Helfand SL. Functional characterization and immunolocalization of the transporter encoded by the life-extending gene Indy. Proc Natl Acad Sci U S A. 2002;99:14315–9.PubMed PubMedCentral CrossRef
    10.Inoue K, Fei YJ, Zhuang L, Gopal E, Miyauchi S, Ganapathy V. Functional features and genomic organization of mouse NaCT, a sodium-coupled transporter for tricarboxylic acid cycle intermediates. Biochem J. 2004;378:949–57.PubMed PubMedCentral CrossRef
    11.He W, Miao FJ, Lin DC, Schwandner RT, Wang Z, Gao J, et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature. 2004;429(6988):188–93.PubMed CrossRef
    12.Ariza AC, Deen PM, Robben JH. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions. Front Endocrinol. 2012;00022:1664–2392.
    13.Bhuniya D, Umrani D, Dave B, Salunke D, Kukreja G, Gundu J, et al. Discovery of a potent and selective small molecule hGPR91 antagonist. Bioorg Med Chem Lett. 2011;21(12):3596–602.PubMed CrossRef
    14.Hakak Y, Lehmann-Bruinsma K, Phillips S, Le T, Liaw C, Connolly DT, et al. The role of the GPR91 ligand succinate in hematopoiesis. J Leukoc Biol. 2009;85:837–43.PubMed CrossRef
    15.Aguiar CJ, Rocha-Franco JA, Sousa PA, Santos AK, Ladeira M, Rocha-Resende C, et al. Succinate causes pathological cardiomyocyte hypertrophy through GPR91 activation. Cell Commun Signal. 2014;12(1):78.PubMed PubMedCentral CrossRef
    16.Toma I, Kang JJ, Sipos A, Vargas S, Bansal E, Hanner F, et al. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J Clin Invest. 2008;118:2526–34.PubMed PubMedCentral
    17.Vargas SL, Toma I, Kang JJ, Meer EJ, Peti-Peterdi J. Activation of the succinate receptor GPR91 in macula densa cells causes renin release. J Am Soc Nephrol. 2009;20(5):1002–11.PubMed PubMedCentral CrossRef
    18.Robben JH, Fenton RA, Vargas SL, Schweer H, Peti-Peterdi J, Deen PM, et al. Localization of the succinate receptor in the distal nephron and its signaling in polarized MDCK cells. Kidney Int. 2009;76(12):1258–67.PubMed CrossRef
    19.Correa PRAV, Krulog EA, Thompsom M, Leite MF, Dranoff JA, Nathanson M. Succinate is a paracrine signal for liver damage. J Hepatology. 2007;47:262–9.CrossRef
    20.Sapieha P, Sirinyan M, Hamel D, Zaniolo K, Joyal JS, Cho JH, et al. The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nat Med. 2008;14(10):1067–76.PubMed CrossRef
    21.Rubic T, Lametschwandtner G, Jost S, Hinteregger S, Kund J, Carballido- Perrig N, et al. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat Immunol. 2008;9:1261–9.PubMed CrossRef
    22.Macaulay IC, Tijssen MR, Thijssen-Timmer DC, Gusnanto A, Steward M, Burns P, et al. Comparative gene expression profiling of in vitro differentiated megakaryocytes and erythroblasts identifies novel activatory and inhibitory platelet membrane proteins. Blood. 2007;109:3260–9.PubMed CrossRef
    23.Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem. 2000;275(4):2247–50.PubMed CrossRef
    24.Li YH, Woo SH, Choi DH, Cho EH. Succinate causes a-SMA production through GPR91 activation in hepatic stellate cells. Biochem Biophys Res Commun. 2015;463:853–8.PubMed CrossRef
    25.Adair TH, Gay WJ, Montani JP. Growth regulation of the vascular system: evidence for a metabolic hypothesis. Am J Physiol. 1990;259:393–404.
    26.Folbergrova J, Ljunggren B, Norberg K, Siesjo BK. Influence of complete ischemia on glycolytic metabolites, citric acid cycle intermediates, and associated amino acids in the rat cerebral cortex. Brain Res. 1974;80:265–79.PubMed CrossRef
    27.Hoyer S, Krier C. Ischemia and aging brain. Studies on glucose and energy metabolism in rat cerebral cortex. Neurobiol Aging. 1986;7:23–9.PubMed CrossRef
    28.Joyal JS, Sitaras N, Binet F, Rivera JC, Stahl A, Zaniolo K, et al. Ischemic neurons prevent vascular regeneration of neural tissue by secreting semaphorin 3A. Blood. 2011;117:6024–35.PubMed PubMedCentral CrossRef
    29.Hu J, Wu Q, Li T, Chen Y, Wang S. Inhibition of high glucose-induced VEGF release in retinal ganglion cells by RNA interference targeting G protein-coupled receptor 91. Exp Eye Res. 2013;109:31–9.PubMed CrossRef
    30.Hu J, Li T, Du S, Chen Y, Wang S, Xiong F, et al. The MAPK signaling pathway mediates the GPR91-dependent release of VEGF from RGC-5 cells. Int J Mol Med. 2015;36(1):130–8.PubMed PubMedCentral
    31.Sadagopan N, Li W, Roberds SL, Major T, Preston GM, Yu Y, et al. Circulating succinate is elevated in rodent models of hypertension and metabolic disease. Am J Hypertens. 2007;20(11):1209–15.PubMed
    32.McCreath KJ, Espada S, Gálvez BG, Benito M, de Molina A, Sepúlveda P, et al. Targeted disruption of the SUCNR1 metabolic receptor leads to dichotomous effects on obesity. Diabetes. 2015;64(4):1154–67.PubMed CrossRef
    33.Aguiar CJ, Andrade VL, Gomes ER, Alves MN, Ladeira MS, Pinheiro AC, et al. Succinate modulates Ca(2+) transient and cardiomyocyte viability through PKA-dependent pathway. Cell Calcium. 2010;47(1):37–46.PubMed CrossRef
    34.Zucker AR, Gondolesi GE, Abbott MA, Decker R, Rosengren SS, Fishbein TM. Liver-intestine transplant from a pediatric donor with unrecognized mitochondrial succinate cytochrome C reductase deficiency. Transplantation. 2005;79(3):356–8.PubMed CrossRef
    35.Davili Z, Johar S, Hughes C, Kveselis D, Hoo J. Succinate dehydrogenase deficiency associated with dilated cardiomyopathy and ventricular noncompaction. Eur J Pediatr. 2007;166:867–70.PubMed CrossRef
  • 作者单位:Matheus de Castro Fonseca (1)
    Carla J. Aguiar (2)
    Joao Antônio da Rocha Franco (1)
    Rafael N. Gingold (1)
    M. Fatima Leite (1)

    1. Department of Physiology and Biophysics, Federal University of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
    2. Centro Universitário Estácio de Sá, Belo Horizonte, MG, Brazil
  • 刊物主题:Cell Biology; Protein-Ligand Interactions; Receptors; Cytokines and Growth Factors;
  • 出版者:BioMed Central
  • ISSN:1478-811X
文摘
Since it was discovered, the citric acid cycle has been known to be central to cell metabolism and energy homeostasis. Mainly found in the mitochondrial matrix, some of the intermediates of the Krebs cycle are also present in the blood stream. Currently, there are several reports that indicate functional roles for Krebs intermediates out of its cycle. Succinate, for instance, acts as an extracellular ligand by binding to a G-protein coupled receptor, known as GPR91, expressed in kidney, liver, heart, retinal cells and possibly many other tissues, leading to a wide array of physiological and pathological effects. Through GPR91, succinate is involved in functions such as regulation of blood pressure, inhibition of lipolysis in white adipose tissue, development of retinal vascularization, cardiac hypertrophy and activation of stellate hepatic cells by ischemic hepatocytes. Along the current review, these new effects of succinate through GPR91 will be explored and discussed. Keywords Succinate GPR91 Cell functions Cell signaling

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700