A glassy carbon electrode modified with an iron N4-macrocycle and reduced graphene oxide for voltammetric sensing of dissolved oxygen
详细信息    查看全文
  • 作者:Saimon M. Silva ; Lucas F. Aguiar ; Rita M. S. Carvalho ; Auro A. Tanaka…
  • 关键词:Fe(III) tetra ; (N ; methyl ; 4 ; pyridyl)porphyrin ; Oxygen reduction ; Differential pulse voltammetry ; Scanning electrochemical microscopy ; FTIR ; Microelectrode ; Seawater analysis ; Pond water analysis
  • 刊名:Microchimica Acta
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:183
  • 期:3
  • 页码:1251-1259
  • 全文大小:1,021 KB
  • 参考文献:1.Skoog DA, West DM and Holler FJ. In Fundamentals of Analytical Chemistry (5th edn.), Saunders: Philadelphia, 1988; pp. 344–350
    2.Hu Y (2004) A simple chemiluminescence method for determination of chemical oxygen demand values in water. Talanta 63:521–526. doi:10.​1016/​j.​talanta.​2003.​11.​037 CrossRef
    3.Clark LC. US Pat. 2 913 386, 1959
    4.Wolfbeis OS (2015) Luminescent sensing and imaging of oxygen: Fierce competition to the Clark electrode. BioEssays 37(8):921–928. doi:10.​1002/​bies.​201500002 CrossRef
    5.Amao Y, Okumura I (2006) Optical Oxygen Sensor (O13). In: Grimes CA, Dickey E, Pishko E (eds) Encyclopedia of Sensors, Chapter 18. American Scientific Publishers, Los Angeles, pp 227--237
    6.Takeuchi Y, Amao Y (2005) Materials for Luminescent Pressure-Sensitive Paint. In: Orellana G, Moreno-Bondi M (eds) Frontiers in Chemical Sensors, vol 3. Springer Series on Chemical Sensors and Biosensors. Springer Berlin Heidelberg, pp 303-322. doi:10.​1007/​3-540-27757-9_​10
    7.Amao Y, Okurab I (2009) Optical oxygen sensor devices using metalloporphyrins. J Porphyrins Phthalocyanines 13:1111–1122CrossRef
    8.Li XM, Wong HY. In Transient D.O. Measurement Using a Computerized Membrane Electrode. Horizons of Biochemical Engineering, University of Tokyo Press: Tokyo, 1987; pp. 13–220.
    9.Li XM, Wong HY. US Pat. 4 921 582, 1990.
    10.Martin CS, Dadamos TRL, Teixeira MFS (2012) Development of an electrochemical sensor for determination of dissolved oxygen by nickel-salen polymeric film modified electrode. Sensors Actuators B Chem 175:111–117. doi:10.​1016/​j.​snb.​2011.​12.​098 CrossRef
    11.Rahim A, Santos LSS, Barros SBA, Kubota LT, Gushikem Y (2013) Dissolved O2 sensor based on cobalt(II) phthalocyanine immobilized in situ on electrically conducting carbon ceramic mesoporous SiO2/C material. Sensors Actuators B Chem 177:231–238. doi:10.​1016/​j.​snb.​2012.​10.​110 CrossRef
    12.Lin ZY, Liu Y, Chen GN (2008) TiO2/Nafion film based electrochemiluminescence for detection of dissolved oxygen. Electrochem Commun 10(10):1629–1632. doi:10.​1016/​j.​elecom.​2008.​08.​015 CrossRef
    13.Tsai TH, Thiagarajan S, Chen SM (2010) Green Synthesis of Silver Nanoparticles Using Ionic Liquid and Application for the Detection of Dissolved Oxygen. Electroanalysis 22(6):680–687. doi:10.​1002/​elan.​200900410 CrossRef
    14.Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669. doi:10.​1126/​science.​1102896 CrossRef
    15.Huang Y, Liang JJ, Chen YS (2012) An Overview of the Applications of Graphene-Based Materials in Supercapacitors. Small 8(12):1805–1834. doi:10.​1002/​smll.​201102635 CrossRef
    16.Ratinac KR, Yang WR, Gooding JJ, Thordarson P, Braet F (2011) Graphene and Related Materials in Electrochemical Sensing. Electroanalysis 23(4):803–826. doi:10.​1002/​elan.​201000545 CrossRef
    17.Coleman JN (2009) Liquid-Phase Exfoliation of Nanotubes and Graphene. Adv Funct Mater 19(23):3680–3695. doi:10.​1002/​adfm.​200901640 CrossRef
    18.Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochemistry of Graphene and Related Materials. Chem Rev 114(14):7150–7188. doi:10.​1021/​cr500023c CrossRef
    19.Rameshkumar P, Praveen R, Ramaraj R (2015) Electroanalysis of oxygen reduction and formic acid oxidation using reduced graphene oxide/gold nanostructures modified electrode. J Electroanal Chem 754:118–124. doi:10.​1016/​j.​jelechem.​2015.​07 CrossRef
    20.Türk K-K, Kruusenberg I, Mondal J, Rauwel P, Kozlova J, Matisen L, Sammelselg V, Tammeveski K (2015) Oxygen electroreduction on MN4-macrocycle modified graphene/multi-walled carbon nanotube composites. J Electroanal Chem 756:69–76. doi:10.​1016/​j.​jelechem.​2015.​08.​014 CrossRef
    21.Hummers WS, Offeman RE (1958) Preparation of Graphitic Oxide. J Am Chem Soc 80(6):1339–1339. doi:10.​1021/​Ja01539a017 CrossRef
    22.Oliveira RM, Santos NG, Alves LA, Lima KCMS, Kubota LT, Damos FS, Luz RCS (2015) Highly sensitive p-nitrophenol determination employing a new sensor based on N-Methylphenazonium methyl sulfate and graphene: Analysis in natural and treated waters. Sensors Actuators B Chem 221:740–749. doi:10.​1016/​j.​snb.​2015.​07.​014 CrossRef
    23.Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7(11):3394–3398. doi:10.​1021/​Nl0717715 CrossRef
    24.Peng S, Fan X, Li S, Zhang J (2013) Green synthesis and characterization of grafite oxide by orthogonal experiment. J Chil Chem Soc 58(4):2213–2217. doi:10.​4067/​S0717-9707201300040006​7 CrossRef
    25.Qiu J, Wang G, Zhao C (2008) Preparation and characterization of amphiphilic multi-walled carbon nanotubes. J Nanoparticle Res 10(4):659–663. doi:10.​1007/​s11051-007-9298-3 CrossRef
    26.Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126–1130. doi:10.​1063/​1.​1674108 CrossRef
    27.Li M, Bo X, Zhang Y, Han C, Guo L (2014) Comparative study on the oxygen reduction reaction electrocatalytic activities of iron phthalocyanines supported on reduced graphene oxide, mesoporous carbon vesicle, and ordered mesoporous carbono. J Power Sources 264:114–122CrossRef
    28.Alvaro M, Atienzar P, de la Cruz P, Delgado JL, Troiani V, Garcia H, Langa F, Palkar A, Echegoyen L (2006) Synthesis, photochemistry, and electrochemistry of single-wall carbon nanotubes with pendent pyridyl groups and of their metal complexes with zinc porphyrin. Comparison with pyridyl-bearing fullerenes. J Am Chem Soc 128(20):6626–6635. doi:10.​1021/​ja057742i CrossRef
    29.Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. 2nd edn. Wiley, New York 20
    30.Wang J (1994) Analytical electrochemistry. VCH, New York
    31.Luz RCS, Damos FS, Tanaka AA, Kubota LT (2006) Dissolved oxygen sensor based on cobalt tetrasulphonated phthalocyanine immobilized in poly-llysine film onto glassy carbon electrode. Sensors Actuators B Chem 114(2):1019–1027. doi:10.​1016/​j.​snb.​2005.​07.​063 CrossRef
    32.Damos FS, Luz RCS, Tanaka AA, Kubota LT (2010) Dissolved oxygen amperometric sensor based on layer-by-layer assembly using host-guest supramolecular interactions. Anal Chim Acta 664(2):144–150. doi:10.​1016/​j.​aca.​2010.​02.​011 CrossRef
    33.Santos LSS, Landers R, Gushikem Y (2011) Application of manganese (II) phthalocyanine synthesized in situ in the SiO2/SnO2 mixed oxide matrix for determination of dissolved oxygen by electrochemical techniques. Talanta 85(2):1213–1216. doi:10.​1016/​j.​talanta.​2011.​06.​003 CrossRef
    34.Yang JQ, Chen JW, Zhou YK, Wu KB (2011) A nano-copper electrochemical sensor for sensitive detection of chemical oxygen demand. Sensors Actuators B Chem 153(1):78–82. doi:10.​1016/​j.​snb.​2010.​10.​015 CrossRef
    35.Zhou YS, Jing T, Hao QL, Zhou YK, Mei SR (2012) A sensitive and environmentally friendly method for determination of chemical oxygen demand using NiCu alloy electrode. Electrochim Acta 74:165–170. doi:10.​1016/​j.​electacta.​2012.​04.​048 CrossRef
    36.Wang J, Li K, Yang C, Wang YL, Jia JP (2012) Ultrasound electrochemical determination of chemical oxygen demand using boron-doped diamond electrode. Electrochem Commun 18:51–54. doi:10.​1016/​j.​elecom.​2012.​02.​002 CrossRef
    37.Ma CJ, Tan F, Zhao HM, Chen S, Quan X (2011) Sensitive amperometric determination of chemical oxygen demand using Ti/Sb-SnO2/PbO2 composite electrode. Sensors Actuators B Chem 155(1):114–119. doi:10.​1016/​j.​snb.​2010.​11.​033 CrossRef
  • 作者单位:Saimon M. Silva (1)
    Lucas F. Aguiar (2)
    Rita M. S. Carvalho (3)
    Auro A. Tanaka (3)
    Flavio S. Damos (3)
    Rita C. S. Luz (3)

    1. School of Chemistry, Australian Centre for NanoMedicine and ARC Centre of Excellence for Bio-Nano Science and Technology, The University of New South Wales, Sydney, NSW, Australia
    2. Department of Chemistry, UFVJM, Diamantina, MG, 39100-000, Brazil
    3. Department of Chemistry, UFMA, São Luíz, MA, 65080-805, Brazil
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
The authors describe a platform for the electrochemical reduction of oxygen. It is based on the use of a glassy carbon electrode (GCE) that was modified in a single-step microwave assisted reaction with a N4-macrocycle containing iron(III) (FeN4) and with reduced graphene oxide. The FeN4/rGO composite was characterized by cyclic voltammetry, differential pulse voltammetry, and scanning electrochemical microscopy (SECM). Cyclic voltammetry showed the composite to enable efficient reduction of O2 at a very low overpotential (−0.05 V vs. Ag/AgCl). SECM measurements were carried out to map (in the redox competition mode) the activity of a GCE microelectrode modified with FeN4/rGO. Under optimized conditions, the response to dissolved O2 ranges from 0.8 up to 25 mg⋅L‾1, and the limit of detection is 0.2 mg⋅L‾p>1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700