Effect of Lignin-Derived Methoxyphenols in Dye Decolorization by Fenton Systems
详细信息    查看全文
  • 作者:Cássia Sidney Santana ; André Aguiar
  • 关键词:Dye ; Fenton reaction ; Prooxidant ; Decolorization ; Hydrogen peroxide
  • 刊名:Water, Air, and Soil Pollution
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:227
  • 期:2
  • 全文大小:677 KB
  • 参考文献:Abdelmalek, F., Ghezzar, M. R., Belhadj, M., Addou, A., & Brisset, J. L. (2006). Bleaching and degradation of textile dyes by nonthermal plasma process at atmospheric pressure. Industrial & Engineering Chemistry Research, 45, 23–29.CrossRef
    Aguiar, A., & Ferraz, A. (2007). Fe3+- and Cu2+-reduction by phenol derivatives associated with Azure B degradation in Fenton-like reactions. Chemosphere, 66, 947–954.CrossRef
    Aguiar, A., & Ferraz, A. (2012). Effect of aqueous extracts from Ceriporiopsis subvermispora-biotreated wood on the decolorization of Azure B by Fenton-like reactions. International Biodeterioration & Biodegradation, 74, 61–66.CrossRef
    Aguiar, A., Ferraz, A., Contreras, D., & Rodríguez, J. (2007). Mechanism and applications of the Fenton reaction assisted by iron-reducing phenolic compounds. Quimica Nova, 30, 623–628.CrossRef
    Aguiar, A., Gavioli, D., & Ferraz, A. (2013). Extracellular activities and wood component losses during Pinus taeda biodegradation by the brown-rot fungus Gloeophyllum trabeum. International Biodeterioration & Biodegradation, 82, 187–191.CrossRef
    Aguiar, A., Gavioli, D., & Ferraz, A. (2014). Metabolite secretion, Fe3+-reducing activity and wood component degradation by the white-rot fungus Trametes versicolor ATCC 20869. Fungal Biology, 118, 935–942.CrossRef
    Antolovich, M., Bedgood, D. R., Jr., Bishop, A. G., Jardine, D., Prenzler, P. D., & Robards, K. (2004). LC-MS investigation of oxidation products of phenolic antioxidants. Journal of Agricultural and Food Chemistry, 52, 962–971.CrossRef
    Barreto, F., Santana, C. S., & Aguiar, A. (2014). Behavior of dihydroxybenzenes and gallic acid on the Fenton decolorization of dyes. Desalination and Water Treatment. doi:10.​1080/​19443994.​2014.​966333 .
    Briante, R., Febbraio, F., & Nucci, R. (2003). Antioxidant properties of low molecular weight phenols present in the Mediterranean diet. Journal of Agricultural and Food Chemistry, 51, 6975–6981.CrossRef
    Camarero, S., Ibarra, D., Martínez, M. J., & Martínez, A. T. (2005). Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Applied and Environmental Microbiology, 71, 1775–1784.CrossRef
    Camarero, S., Ibarra, D., Martínez, A. T., Romero, J., Gutiérrez, A., & del Río, J. C. (2007). Paper pulp delignification using laccase and natural mediators. Enzyme and Microbial Technology, 40, 1264–1271.CrossRef
    Chen, F., Ma, W. H., He, J. J., & Zhao, J. C. (2002). Fenton degradation of malachite green catalyzed by aromatic additives. Journal of Physical Chemistry A, 106, 9485–9490.CrossRef
    Devi, L. G., Kumar, S. G., Raju, K. S. A., & Rajashekhar, K. E. (2010). Photo-Fenton and photo-Fenton-like processes for the degradation of methyl orange in aqueous medium: influence of oxidation states of iron. Chemical Papers, 64, 378–385.CrossRef
    Du, Y., Zhou, M., & Lei, L. (2006). Role of the intermediates in the degradation of phenolic compounds by Fenton-like process. Journal of Hazardous Materials, B136, 859–865.CrossRef
    Ferraz, A., Parra, C., Freer, J., Baeza, J., & Rodríguez, J. (2001). Occurrence of iron-reducing compounds in biodelignified “palo podrido” wood samples. International Biodeterioration & Biodegradation, 47, 203–208.CrossRef
    Fillat, A., Colom, J. F., & Vidal, T. (2010). A new approach to the biobleaching of flax pulp with laccase using natural mediators. Bioresource Technology, 101, 4104–4110.CrossRef
    Filley, T. R., Cody, G. D., Goodell, B., Jellison, J., Noser, C., & Ostrofsky, A. (2002). Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi. Organic Geochemistry, 33, 111–124.CrossRef
    Goodell, B., Qian, Y., Jellison, J., & Richard, M. (2004). Decolorization and degradation of dyes with mediated Fenton reaction. Water Environment Research, 76, 2703–2707.
    Goodell, B., Daniel, G., Jellison, J., & Qian, Y. H. (2006). Iron-reducing capacity of low-molecular-weight compounds produced in wood by fungi. Holzforschung, 60, 630–636.CrossRef
    Horta, M. A., Masarin, F., Rodríguez, J., & Ferraz, A. (2011). Linoleic acid peroxidation initiated by Fe3+-reducing compounds recovered from Eucalyptus grandis biotreated with Ceriporiopsis subvermispora. International Biodeterioration & Biodegradation, 65, 164–171.CrossRef
    Hsueh, C. L., Huang, Y. H., Wang, C. C., & Chen, C. Y. (2005). Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere, 58, 1409–1414.CrossRef
    Huang, F., Chen, L., Wang, H., & Yan, Z. (2010). Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma. Chemical Engineering Journal, 162, 250–256.CrossRef
    Ifelebuegu, A. O., & Ezenwa, C. P. (2011). Removal of endocrine disrupting chemicals in wastewater treatment by Fenton-like oxidation. Water, Air, & Soil Pollution, 217, 213–220.CrossRef
    Jiang, C., Pang, S., Ouyang, F., Ma, J., & Jiang, J. (2010). A new insight into Fenton and Fenton-like processes for water treatment. Journal of Hazardous Materials, 174, 813–817.CrossRef
    Johannes, C., & Majcherczyk, A. (2000). Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Applied and Environmental Microbiology, 66, 524–528.CrossRef
    Lachheb, H., Puzenat, E., Houas, A., Ksibi, M., Elaloui, E., Guillard, C., & Herrmann, J. M. (2002). Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Applied Catalysis B: Environmental, 39, 75–90.CrossRef
    Magureanu, M., Mandache, N. B., & Parvulescu, V. I. (2007). Degradation of organic dyes in water by electrical discharges. Plasma Chemistry and Plasma Processing, 27, 589–598.CrossRef
    Malik, P. K., & Saha, S. K. (2003). Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst. Separation and Purification Technology, 31, 241–250.CrossRef
    Maurya, D. K., & Devasagayam, T. P. A. (2010). Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids. Food Chemistry Toxicology, 48, 3369–3373.CrossRef
    Moran, J. F., Klucas, R. V., Grayer, R. J., Abian, J., & Becana, M. (1997). Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties. Free Radical Biology & Medicine, 22, 861–870.CrossRef
    Nichela, D., Haddou, M., Benoit-Marquié, F., Maurette, M. T., Oliveros, E., & Einschlag, F. S. G. (2010). Degradation kinetics of hydroxy and hydroxynitro derivatives of benzoic acid by Fenton-like and photo-Fenton techniques: a comparative study. Applied Catalysis B: Environmental, 98, 171–179.CrossRef
    Nichela, D. A., Donadelli, J. A., Caram, B. F., Haddou, M., Nieto, F. J. R., Oliveros, E., & Einschlag, F. S. G. (2015). Iron cycling during the autocatalytic decomposition of benzoic acid derivatives by Fenton-like and photo-Fenton Techniques. Applied Catalysis B: Environmental, 170–171, 312–321.CrossRef
    Nogueira, R. F. P., Oliveira, M. C., & Paterlini, W. C. (2005). Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate. Talanta, 66, 86–91.CrossRef
    Oliveira, L. C. A., Gonçalves, M., Guerreiro, M. C., Ramalho, T. C., Fabris, J. D., Pereira, M. C., & Sapag, K. (2007). A new catalyst material based on niobia/iron oxide composite on the oxidation of organic contaminants in water via heterogeneous Fenton mechanisms. Applied Catalysis A: General, 316, 117–124.CrossRef
    Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 36, 1–84.CrossRef
    Poyatos, J. M., Muñio, M. M., Almecija, M. C., Torres, J. C., Hontoria, E., & Osorio, F. (2010). Advanced oxidation processes for wastewater treatment: state of the art. Water, Air, & Soil Pollution, 205, 187–204.CrossRef
    Pracht, J., Boenigk, J., Isenbeck-Schoter, M., Keppler, F., & Scholer, H. F. (2001). Abiotic Fe(III) induced mineralization of phenolic substances. Chemosphere, 44, 613–619.CrossRef
    Qiu, M., & Huang, C. (2010). A comparative study of degradation of the azo dye C.I. Acid Blue 9 by Fenton and photo-Fenton oxidation. Desalination and Water Treatment, 24, 273–277.CrossRef
    Rodríguez, J., Parra, C., Contreras, D., Freer, J., & Baeza, J. (2001). Dihydroxybenzenes: driven Fenton reactions. Water Science and Technology, 44, 251–256.
    Sahoo, M. K., & Sayoo, L. (2014). Removal of Acid Blue 29 in aqueous solution by Fenton and Fenton-like processes. Desalination and Water Treatment, 52, 3411–3420.CrossRef
    Santana, C. S., & Aguiar, A. (2015). Effect of biological mediator, 3-hydroxyanthranilic acid, in dye decolorization by Fenton processes. International Biodeterioration & Biodegradation, 104, 1–7.CrossRef
    Saritha, P., Raj, D. S. S., Aparna, C., Laxmi, P. N. V., Himabindu, V., & Anajaneyulu, Y. (2009). Degradative oxidation of 2,4,6 trichlorophenol using advanced oxidation processes—a comparative study. Water, Air, & Soil Pollution, 200, 169–179.CrossRef
    Tarabanko, V. E., Chelbina, Y. V., Kudryashev, A. V., & Tarabanko, N. V. (2013). Separation of vanillin and syringaldehyde produced from lignins. Separation Science and Technology, 48, 127–132.CrossRef
    Yoshino, M., & Murakami, K. (1998). Interaction of iron with polyphenolic compounds: application to antioxidant characterization. Analytical Biochemistry, 257, 40–44.CrossRef
    Zepp, R. G., Faust, B. C., & Hoigne, J. (1992). Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron(II) with hydrogen peroxide: the photo-Fenton reaction. Environmental Science & Technology, 26, 313–319.CrossRef
  • 作者单位:Cássia Sidney Santana (1)
    André Aguiar (1) (2)

    1. Departamento de Química, Biotecnologia e Engenharia de Bioprocessos, Campus Alto Paraopeba, Universidade Federal de São João Del-Rei, CP 131, 36420-000, Ouro Branco, MG, Brazil
    2. Instituto de Recursos Naturais, Universidade Federal de Itajubá, CP 50, 37500-903, Itajubá, MG, Brazil
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Terrestrial Pollution
    Hydrogeology
  • 出版者:Springer Netherlands
  • ISSN:1573-2932
文摘
Lignin-derived methoxyphenols (MPs) with Fe3+-reducing activity were used as potential mediators to increase the decolorization of dyes by classical Fenton (Fe2+/H2O2) and Fenton-like reactions (Fe3+/H2O2). In this study, several MPs such as vanillin, vanillic alcohol, syringaldehyde, ferulic, vanillic, and syringic acids were evaluated. The results showed that all MPs displayed similar prooxidant activities in the decolorization of methylene blue, chromotrope 2R, methyl orange, and phenol red. For example, the reaction performed with Fe3+/H2O2 decolorized 27 % of chromotrope 2R, whereas the treatments with Fe3+/H2O2/MP decolorized around 70 % of the same dye after 60 min. For Fe2+/H2O2 systems, two stages of decolorization were visibly observed. In the first stage, the MPs inhibited the treatments, and then they increased the decolorization rate in the second stage. Prooxidant and antioxidant properties were observed for decolorization of methylene blue performed in the presence of low and high concentrations of vanillin, respectively. Overall, the MPs increased dye decolorization without increasing the consumption of H2O2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700