Analysis of structure-Caco-2 permeability relationships using a property landscape approach
详细信息    查看全文
  • 作者:Yareli Rojas-Aguirre (1) (2)
    José L. Medina-Franco (1) (3)
  • 关键词:ADME ; Caco ; 2 permeability landscape ; Permeability cliffs ; Property landscape ; Structure ; property relationships
  • 刊名:Molecular Diversity
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:18
  • 期:3
  • 页码:599-610
  • 全文大小:3,734 KB
  • 参考文献:1. Lombardino JG, Lowe JA (2004) The role of the medicinal chemist in drug discovery—then and now. Nat Rev Drug Discov 3:853-62. doi:10.1038/nrd1523 CrossRef
    2. Keseru GM, Makara GM (2009) The influence of lead discovery strategies on the properties of drug candidates. Nat Rev Drug Discov 8:203-12. doi:10.1038/nrd2796 CrossRef
    3. Hann MM, Keserü GM (2012) Finding the sweet spot: The role of nature and nurture in medicinal chemistry. Nat Rev Drug Discov 11:355-65. doi:10.1038/nrd3701 CrossRef
    4. van de Waterbeemd H, Gifford E (2003) ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2:192-04. doi:10.1038/nrd1032 CrossRef
    5. Moroy G, Martiny VY, Vayer P, Villoutreix BO, Miteva MA (2012) Toward in silico structure-based ADMET prediction in drug discovery. Drug Discov Today 17:44-5. doi:10.1016/j.drudis.2011.10.023 CrossRef
    6. Pavurala N, Achenie LEK (2013) A mechanistic approach for modeling oral drug delivery. Comput Chem Eng 57:196-06. doi:10.1016/j.compchemeng.2013.06.002 CrossRef
    7. Kerns EH, Di L (2003) Pharmaceutical profiling in drug discovery. Drug Discov Today 8:316-23. doi:10.1016/S1359-6446(03)02649-7 CrossRef
    8. Kobayashi M, Sada N, Sugawara M, Iseki K, Miyazaki K (2001) Development of a new system for prediction of drug absorption that takes into account drug dissolution and pH change in the gastro-intestinal tract. Int J Pharm 221:87-4. doi:10.1016/S0378-5173(01)00663-9 CrossRef
    9. Hidalgo IJ, Raub TJ, Borchardt RT (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736-49
    10. Sugano K, Kansy M, Artursson P, Avdeef A, Bendels S, Di L et al (2010) Coexistence of passive and carrier-mediated processes in drug transport. Nat Rev Drug Discov 9:597-14. doi:10.1038/nrd3187 CrossRef
    11. Artursson P, Karlsson J (1991) Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun 175:880-85. doi:10.1016/0006-291X(91)91647-U CrossRef
    12. Artursson P, Palm K, Luthman K (2001) Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Delivery Rev 46:27-3. doi:10.1016/S0169-409X(00)00128-9 CrossRef
    13. Camenisch G, Alsenz J, van de Waterbeemd H, Folkers G (1998) Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs-lipophilicity and molecular weight. Eur J Pharm Sci 6:313-19. doi:10.1016/S0928-0987(97)10019-7 CrossRef
    14. Chan ECY, Tan WL, Ho PC, Fang LJ (2005) Modeling Caco-2 permeability of drugs using immobilized artificial membrane chromatography and physicochemical descriptors. J Chromatogr A 1072:159-68. doi:10.1016/j.chroma.2005.03.006 CrossRef
    15. Medina-Franco JL (2013) Activity cliffs: Facts or artifacts? Chem Biol Drug Des 81:553-56. doi:10.1111/cbdd.12115 CrossRef
    16. Palm K, Luthman K, Ungell A-L, Strandlund G, Artursson P (1996) Correlation of drug absorption with molecular surface properties. J Pharm Sci 85:32-9. doi:10.1021/js950285r CrossRef
    17. Hou T, Zhang W, Xia K, Qiao X, Xu X (2004) ADME evaluation in drug discovery. 5. Correlation of Caco-2 permeation with simple molecular properties. J Chem Inf Comput Sci 44:1585-600. doi:10.1021/ci049884m CrossRef
    18. Castillo-Garit JA, Marrero-Ponce Y, Torrens F, García-Domenech R (2008) Estimation of ADME properties in drug discovery: Predicting Caco-2 cell permeability using atom-based stochastic and non-stochastic linear indices. J Pharm Sci 97:1946-976. doi:10.1002/jps.21122 CrossRef
    19. Paix?o P, Gouveia LF, Morais JAG (2010) Prediction of the in vitro permeability determined in Caco-2 cells by using artificial neural networks. Eur J Pharm Sci 41:107-17. doi:10.1016/j.ejps.2010.05.014 CrossRef
    20. Maggiora GM (2006) On outliers and activity cliffs-why QSAR often disappoints. J Chem Inf Model 46:1535. doi:10.1021/ci060117s CrossRef
    21. Wassermann AM, Wawer M, Bajorath J (2010) Activity landscape representations for structure-activity relationship analysis. J Med Chem 53:8209-223. doi:10.1021/jm100933w CrossRef
    22. Medina-Franco JL, Waddell J (2012) Towards the bioassay activity landscape modeling in compound databases. J Mex Chem Soc 56:163-68
    23. Medina-Franco JL (2012) Scanning structure-activity relationships with structure-activity similarity and related maps: From consensus activity cliffs to selectivity switches. J Chem Inf Model 52:2485-493. doi:10.1021/ci300362x CrossRef
    24. Shanmugasundaram V, Maggiora GM (2001) Characterizing property and activity landscapes using an information-theoretic approach. CINF-032, Chicago, IL, USA. American Chemical Society, Washington
    25. Yongye AB, Medina-Franco JL (2013) Systematic characterization of structure-activity relationships and ADMET compliance: A case study. Drug Discov Today 18:732-39. doi:10.1016/j.drudis.2013.04.002 CrossRef
    26. Pérez-Villanueva J, Santos R, Hernández-Campos A, Giulianotti MA, Castillo R, Medina-Franco JL (2010) Towards a systematic characterization of the antiprotozoal activity landscape of benzimidazole derivatives. Bioorg Med Chem 18:7380-391. doi:10.1016/j.bmc.2010.09.019
    27. Yongye A, Byler K, Santos R, Martínez-Mayorga K, Maggiora GM, Medina-Franco JL (2011) Consensus models of activity landscapes with multiple chemical, conformer and property representations. J Chem Inf Model 51:1259-270. doi:10.1021/ci200081k
    28. Medina-Franco JL, Yongye AB, Pérez-Villanueva J, Houghten RA, Martínez-Mayorga K (2011) Multitarget structure-activity relationships characterized by activity-difference maps and consensus similarity measure. J Chem Inf Model 51:2427-439. doi:10.1021/ci200281v CrossRef
    29. Willett P, Barnard JM, Downs GM (1998) Chemical similarity searching. J Chem Inf Comput Sci 38:983-96. doi:10.1021/ci9800211 CrossRef
    30. Askjaer S, Langgard M (2008) Combining pharmacophore fingerprints and PLS-discriminant analysis for virtual screening and SAR elucidation. J Chem Inf Model 48:476-88. doi:10.1021/ci700356w CrossRef
    31. Medina-Franco JL, Martínez-Mayorga K, Bender A, Marín RM, Giulianotti MA, Pinilla C et al (2009) Characterization of activity landscapes using 2D and 3D similarity methods: Consensus activity cliffs. J Chem Inf Model 49:477-91. doi:10.1021/ci800379q CrossRef
    32. López-Vallejo F, Giulianotti MA, Houghten RA, Medina-Franco JL (2012) Expanding the medicinally relevant chemical space with compound libraries. Drug Discov Today 17:718-26. doi:10.1016/j.drudis.2012.04.001 CrossRef
    33. Martínez-Mayorga K, Peppard TL, Yongye AB, Santos R, Giulianotti M, Medina-Franco JL (2011) Characterization of a comprehensive flavor database. J Chemometr 25:550-60. doi:10.1002/cem.1399 CrossRef
    34. Rubas W, Jezyk N, Grass G (1993) Comparison of the permeability characteristics of a human colonic epithelial (Caco-2) cell line to colon of rabbit, monkey, and dog intestine and human drug absorption. Pharm Res 10:113-18. doi:10.1023/A:1018937416447 CrossRef
    35. Fischer W, Metzner L, Hoffmann K, Neubert RH, Brandsch M (2006) Substrate specificity and mechanism of the intestinal clonidine uptake by Caco-2 cells. Pharm Res 23:131-37. doi:10.1007/s11095-005-8925-x CrossRef
    36. Artursson P, Palm K, Luthman K (1996) Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Delivery Rev 22:67-4. doi:10.1016/S0169-409X(96)00415-2 CrossRef
    37. Koljonen M, Hakala KS, Ahtola-S?til? T, Laitinen L, Kostiainen R, Kotiaho T et al (2006) Evaluation of cocktail approach to standardise Caco-2 permeability experiments. Eur J Pharm Biopharm 64:379-87. doi:10.1016/j.ejpb.2006.06.006 CrossRef
    38. Pade V, Stavchansky S (1997) Estimation of the relative contribution of the transcellular and paracellular pathway to the transport of passively absorbed drugs in the Caco-2 cell culture model. Pharm Res 14:1210-215. doi:10.1023/A:1012111008617 CrossRef
    39. Hovgaard L, Br?ndsted H, Buur A, Bundgaard H (1995) Drug delivery studies in Caco-2 monolayers. Synthesis, hydrolysis, and transport of o-cyclopropane carboxylic acid ester prodrugs of various \(\beta \) -blocking agents. Pharm Res 12:387-92. doi: 10.1023/A:1016204602471 CrossRef
    40. Santos R, Giulianotti MA, Houghten RA, Medina-Franco JL (2013) Conditional probabilistic analysis for prediction of the activity landscape and relative compound activities. J Chem Inf Model 53:2613-625. doi:10.1021/ci400243e CrossRef
    41. Guha R, Van Drie JH (2008) Assessing how well a modeling protocol captures a structure-activity landscape. J Chem Inf Model 48:1716-728. doi:10.1021/ci8001414 CrossRef
    42. Cruz-Monteagudo M, Medina-Franco JL, Pérez-Castillo Y, Cordeiro MNDS, Borges F (2014) Activity cliffs in drug discovery: Dr. Jekyll or Mr. Hyde? Drug Discov Today. doi:10.1016/j.drudis.2014.02.003
  • 作者单位:Yareli Rojas-Aguirre (1) (2)
    José L. Medina-Franco (1) (3)

    1. Instituto de Química, Universidad Nacional Autónoma de México, 04510?, Mexico City, Mexico
    2. University of Michigan, 1101 Beal Avenue, Lurie Biomedical Engineering Building, Ann Arbor, MI?, 48109, USA
    3. Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ?, 85259, USA
  • ISSN:1573-501X
文摘
Understanding the relationship between the chemical structure of bioactive compounds and Caco-2 permeability is of major importance in modern drug discovery. The purpose of this work was to characterize systematically the Caco-2 permeability landscape of a benchmark dataset of 100 molecules using a novel approach based on the emerging concept of property landscape modeling. Pairwise comparisons of the Caco-2 permeability and chemical structures were calculated for all possible combinations in the dataset. To compare the chemical structures, two distinct manners to represent the molecules were employed, namely, continuous properties previously used to derive QSPR models and molecular fingerprints with different designs. We introduce the concept of “permeability cliffs-discussing cases of compounds with high molecular similarity but large permeability difference. All permeability cliffs were regarded as shallow cliffs, since no extreme difference in Caco-2 permeability (less than two log units) was identified in the dataset. A clear dependence of Caco-2 permeability landscape with molecular representation was observed. The current approach can be further extended to model other ADME relevant landscapes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700