Progenitor Cells Confer Plasticity to Cardiac Valve Endothelium
详细信息    查看全文
  • 作者:Joyce Bischoff (1)
    Elena Aikawa (2)
  • 关键词:Valve endothelial cells ; Valve interstitial cells ; Endothelial ; to ; mesenchymal transformation ; Mitral valve ; Osteogenesis ; Chondrogenesis
  • 刊名:Journal of Cardiovascular Translational Research
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:4
  • 期:6
  • 页码:710-719
  • 全文大小:710KB
  • 参考文献:1. Lincoln, J., Alfieri, C. M., & Yutzey, K. E. (2004). Development of heart valve leaflets and supporting apparatus in chicken and mouse embryos. / Developmental Dynamics, 230, 239-50. CrossRef
    2. de Lange, F. J., Moorman, A. F., Anderson, R. H., Manner, J., Soufan, A. T., de Gier-de Vries, C., et al. (2004). Lineage and morphogenetic analysis of the cardiac valves. / Circulation Research, 95, 645-54. CrossRef
    3. Liu, A. C., Joag, V. R., & Gotlieb, A. I. (2007). The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. / American Journal of Pathology, 171, 1407-418. CrossRef
    4. Maron, B. J., & Hutchins, G. M. (1974). The development of the semilunar valves in the human heart. / American Journal of Pathology, 74, 331-44.
    5. Hurle, J. M. (1979). Scanning and light microscope studies of the development of the chick embryo semilunar heart valves. / Anatomy and Embryology, 157, 69-0. CrossRef
    6. Hurle, J. M., Colvee, E., & Blanco, A. M. (1980). Development of mouse semilunar valves. / Anatomy and Embryology, 160, 83-1. CrossRef
    7. Hurle, J. M., & Colvee, E. (1983). Changes in the endothelial morphology of the developing semilunar heart valves. A tem and sem study in the chick. / Anatomy and Embryology, 167, 67-3. CrossRef
    8. Deck, J. D. (1986). Endothelial cell orientation on aortic valve leaflets. / Cardiovascular Research, 20, 760-67. CrossRef
    9. Butcher, J. T., Penrod, A. M., Garcia, A. J., & Nerem, R. M. (2004). Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments. / Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1429-434. CrossRef
    10. Simmons, C. A., Grant, G. R., Manduchi, E., & Davies, P. F. (2005). Spatial heterogeneity of endothelial phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic valves. / Circulation Research, 96, 792-99. CrossRef
    11. Butcher, J. T., Tressel, S., Johnson, T., Turner, D., Sorescu, G., Jo, H., et al. (2006). Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences: influence of shear stress. / Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 69-7. CrossRef
    12. Guerraty, M. A., Grant, G. R., Karanian, J. W., Chiesa, O. A., Pritchard, W. F., & Davies, P. F. (2010). Hypercholesterolemia induces side-specific phenotypic changes and peroxisome proliferator-activated receptor-gamma pathway activation in swine aortic valve endothelium. / Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 225-31. CrossRef
    13. Sucosky, P., Balachandran, K., Elhammali, A., Jo, H., & Yoganathan, A. P. (2009). Altered shear stress stimulates upregulation of endothelial vcam-1 and icam-1 in a bmp-4- and tgf-beta1-dependent pathway. / Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 254-60. CrossRef
    14. Aikawa, E., Whittaker, P., Farber, M., Mendelson, K., Padera, R. F., Aikawa, M., et al. (2006). Human semilunar cardiac valve remodeling by activated cells from fetus to adult: Implications for postnatal adaptation, pathology, and tissue engineering. / Circulation, 113, 1344-352. CrossRef
    15. Chi, J. T., Chang, H. Y., Haraldsen, G., Jahnsen, F. L., Troyanskaya, O. G., Chang, D. S., et al. (2003). Endothelial cell diversity revealed by global expression profiling. / Proceedings of the National Academy of Sciences of the United States of America, 100, 10623-0628. CrossRef
    16. Johnson, C. M., & Fass, D. N. (1983). Porcine cardiac valvular endothelial cells in culture. A relative deficiency of fibronectin synthesis in vitro. / Laboratory Investigation, 49, 589-98.
    17. Johnson, C. M., & Helgeson, S. C. (1993). Fibronectin biosynthesis and cell-surface expression by cardiac and non-cardiac endothelial cells. / American Journal of Pathology, 142, 1401-408.
    18. Simon, A., Zavazava, N., Sievers, H. H., & Muller-Ruchholtz, W. (1993). In vitro cultivation and immunogenicity of human cardiac valve endothelium. / Journal of Cardiac Surgery, 8, 656-65. CrossRef
    19. Markwald, R. R., Fitzharris, T. P., & Manasek, F. J. (1977). Structural development of endocardial cushions. / The American Journal of Anatomy, 148, 85-19. CrossRef
    20. Markwald, R. R., Fitzharris, T. P., & Smith, W. N. (1975). Structural analysis of endocardial cytodifferentiation. / Developmental Biology, 42, 160-80. CrossRef
    21. Krug, E. L., Runyan, R. B., & Markwald, R. R. (1985). Protein extracts from early embryonic hearts initiate cardiac endothelial cytodifferentiation. / Developmental Biology, 112, 414-26. CrossRef
    22. Markwald, R., Eisenberg, C., Eisenberg, L., Trusk, T., & Sugi, Y. (1996). Epithelial-mesenchymal transformations in early avian heart development. / Acta Anatomica, 156, 173-86. CrossRef
    23. Sugi, Y., Yamamura, H., Okagawa, H., & Markwald, R. R. (2004). Bone morphogenetic protein-2 can mediate myocardial regulation of atrioventricular cushion mesenchymal cell formation in mice. / Developmental Biology, 269, 505-18. CrossRef
    24. Ma, L., Lu, M. F., Schwartz, R. J., & Martin, J. F. (2005). Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. / Development, 132, 5601-611. CrossRef
    25. Rivera-Feliciano, J., & Tabin, C. J. (2006). Bmp2 instructs cardiac progenitors to form the heart-valve-inducing field. / Developmental Biology, 295, 580-88. CrossRef
    26. Brown, C. B., Boyer, A. S., Runyan, R. B., & Barnett, J. V. (1996). Antibodies to the type ii tgfbeta receptor block cell activation and migration during atrioventricular cushion transformation in the heart. / Developmental Biology, 174, 248-57. CrossRef
    27. Person, A. D., Klewer, S. E., & Runyan, R. B. (2005). Cell biology of cardiac cushion development. / International Review of Cytology, 243, 287-35. CrossRef
    28. Liebner, S., Cattelino, A., Gallini, R., Rudini, N., Iurlaro, M., Piccolo, S., et al. (2004). Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. / The Journal of Cell Biology, 166, 359-67. CrossRef
    29. Timmerman, L. A., Grego-Bessa, J., Raya, A., Bertran, E., Perez-Pomares, J. M., Diez, J., et al. (2004). Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. / Genes & Development, 18, 99-15. CrossRef
    30. Combs, M. D., & Yutzey, K. E. (2009). Heart valve development: regulatory networks in development and disease. / Circulation Research, 105, 408-21. CrossRef
    31. Lincoln, J., & Yutzey, K. E. (2011). Molecular and developmental mechanisms of congenital heart valve disease. / Birth Defects Research. Part A, Clinical and Molecular Teratology, 91, 526-34. CrossRef
    32. Paranya, G., Vineberg, S., Dvorin, E., Kaushal, S., Roth, S. J., Rabkin, E., et al. (2001). Aortic valve endothelial cells undergo transforming growth factor-beta-mediated and non-transforming growth factor-beta-mediated transdifferentiation in vitro. / American Journal of Pathology, 159, 1335-343. CrossRef
    33. Paruchuri, S., Yang, J. H., Aikawa, E., Melero-Martin, J. M., Khan, Z. A., Loukogeorgakis, S., et al. (2006). Human pulmonary valve progenitor cells exhibit endothelial/mesenchymal plasticity in response to vascular endothelial growth factor-a and transforming growth factor-beta2. / Circulation Research, 99, 861-69. CrossRef
    34. Yang, J. H., Wylie-Sears, J., & Bischoff, J. (2008). Opposing actions of notch1 and vegf in post-natal cardiac valve endothelial cells. / Biochemical and Biophysical Research Communications, 374, 512-16. CrossRef
    35. Chaput, M., Handschumacher, M. D., Tournoux, F., Hua, L., Guerrero, J. L., Vlahakes, G. J., et al. (2008). Mitral leaflet adaptation to ventricular remodeling: occurrence and adequacy in patients with functional mitral regurgitation. / Circulation, 118, 845-52. CrossRef
    36. Dal-Bianco, J. P., Aikawa, E., Bischoff, J., Guerrero, J. L., Handschumacher, M. D., Sullivan, S., et al. (2009). Active adaptation of the tethered mitral valve: Insights into a compensatory mechanism for functional mitral regurgitation. / Circulation, 120, 334-42. CrossRef
    37. Lincoln, J., Lange, A. W., & Yutzey, K. E. (2006). Hearts and bones: shared regulatory mechanisms in heart valve, cartilage, tendon, and bone development. / Developmental Biology, 294, 292-02. CrossRef
    38. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. / Science, 284, 143-47. CrossRef
    39. Wylie-Sears, J., Aikawa, E., Levine, R. A., Yang, J. H., & Bischoff, J. (2011). Mitral valve endothelial cells with osteogenic differentiation potential. / Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 598-07. CrossRef
    40. Melero-Martin, J. M., Khan, Z. A., Picard, A., Wu, X., Paruchuri, S., & Bischoff, J. (2007). In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. / Blood, 109, 4761-768. CrossRef
    41. Ingram, D. A., Mead, L. E., Tanaka, H., Meade, V., Fenoglio, A., Mortell, K., et al. (2004). Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. / Blood, 104, 2752-760. CrossRef
    42. Kraling, B. M., & Bischoff, J. (1998). A simplified method for growth of human microvascular endothelial cells results in decreased senescence and continued responsiveness to cytokines and growth factors. / In Vitro Cellular & Developmental Biology–Animal, 34, 308-15. CrossRef
    43. Rajamannan, N. M., Subramaniam, M., Rickard, D., Stock, S. R., Donovan, J., Springett, M., et al. (2003). Human aortic valve calcification is associated with an osteoblast phenotype. / Circulation, 107, 2181-184. CrossRef
    44. Chen, J. H., Yip, C. Y., Sone, E. D., & Simmons, C. A. (2009). Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential. / American Journal of Pathology, 174, 1109-119. CrossRef
    45. Osman, L., Yacoub, M. H., Latif, N., Amrani, M., & Chester, A. H. (2006). Role of human valve interstitial cells in valve calcification and their response to atorvastatin. / Circulation, 114, I547-52. CrossRef
    46. Bouchard-Martel, J., Roussel, E., Drolet, M. C., Arsenault, M., & Couet, J. (2009). Interstitial cells from left-sided heart valves display more calcification potential than from right-sided valves: an in-vitro study of porcine valves. / The Journal of Heart Valve Disease, 18, 421-28.
    47. Aikawa, E., Nahrendorf, M., Sosnovik, D., Lok, V. M., Jaffer, F. A., Aikawa, M., et al. (2007). Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. / Circulation, 115, 377-86. CrossRef
    48. Arciniegas, E., Sutton, A. B., Allen, T. D., & Schor, A. M. (1992). Transforming growth factor beta 1 promotes the differentiation of endothelial cells into smooth muscle-like cells in vitro. / Journal of Cell Science, 103(Pt 2), 521-29.
    49. Frid, M. G., Kale, V. A., & Stenmark, K. R. (2002). Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation: in vitro analysis. / Circulation Research, 90, 1189-196. CrossRef
    50. Ishisaki, A., Hayashi, H., Li, A. J., & Imamura, T. (2003). Human umbilical vein endothelium-derived cells retain potential to differentiate into smooth muscle-like cells. / Journal of Biological Chemistry, 278, 1303-309. CrossRef
    51. Dudley, A. C., Khan, Z. A., Shih, S. C., Kang, S. Y., Zwaans, B. M., Bischoff, J., et al. (2008). Calcification of multipotent prostate tumor endothelium. / Cancer Cell, 14, 201-11. CrossRef
    52. Zeisberg, E. M., Tarnavski, O., Zeisberg, M., Dorfman, A. L., McMullen, J. R., Gustafsson, E., et al. (2007). Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. / Nature Medicine, 13, 952-61. CrossRef
    53. Zeisberg, E. M., & Kalluri, R. (2010). Origins of cardiac fibroblasts. / Circulation Research, 107, 1304-312. CrossRef
    54. Medici, D., Shore, E. M., Lounev, V. Y., Kaplan, F. S., Kalluri, R., & Olsen, B. R. (2010). Conversion of vascular endothelial cells into multipotent stem-like cells. / Nature Medicine, 16, 1400-406. CrossRef
  • 作者单位:Joyce Bischoff (1)
    Elena Aikawa (2)

    1. Vascular Biology Program and Department of Surgery, Children’s Hospital Boston and Harvard Medical School, Boston, MA, USA
    2. Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
  • ISSN:1937-5395
文摘
The endothelium covering the aortic, pulmonary, mitral, and tricuspid valves looks much like the endothelium throughout the vasculature, in terms of general morphology and expression of many endothelial markers. Closer examination, however, reveals important differences and hints of a unique phenotype that reflects the valvular endothelium's embryonic history, and potentially, its ability to maintain integrity and function over a life span of dynamic mechanical stress. A well-studied property that sets the cardiac valvular endothelium apart is the ability to transition from an endothelial to a mesenchymal phenotype—an event known as epithelial to mesenchymal transition (EMT). EMT is a critical step during embryonic valvulogenesis, it can occur in post-natal valves and has recently been implicated in the adaptive response of mitral valve leaflets exposed to a controlled in vivo setting designed to mimic the leaflet tethering that occurs in ischemic mitral regurgitation. In this review, we will discuss what is known about valvular endothelial cells, with a particular focus on post-natal, adult valves. We will put forth the idea that at subset of valvular endothelial cells are progenitor cells, which may serve to replenish valvular cells during normal cellular turnover and in response to injury and disease.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700