An Electrochemical Sensor Based on Reduced Graphene Oxide and ZnO Nanorods-Modified Glassy Carbon Electrode for Uric Acid Detection
详细信息    查看全文
  • 作者:Li Fu ; Yuhong Zheng ; Aiwu Wang ; Wen Cai…
  • 关键词:Electrochemical sensor ; Uric acid ; Nanocomposite ; One ; pot
  • 刊名:Arabian Journal for Science and Engineering
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:41
  • 期:1
  • 页码:135-141
  • 全文大小:1,331 KB
  • 参考文献:1.Bui L.V., Cooper C.: Reverse-phase liquid chromatographic determination of benzoic and sorbic acids in foods. J. Assoc. Off. Anal. Chem. 70(5), 892–896 (1987)
    2.Alderman M., Aiyer K.J.V.: Uric acid: role in cardiovascular disease and effects of losartan. Curr. Med. Res. Opin. 20(3), 369–379 (2004). doi:10.​1185/​0300799041250029​82 CrossRef
    3.Sun Z., Fu H., Deng L., Wang J.: Redox-active thionine-graphene oxide hybrid nanosheet: one-pot, rapid synthesis, and application as a sensing platform for uric acid. Anal. Chim. Acta 761, 84–91 (2013). doi:10.​1016/​j.​aca.​2012.​11.​057 CrossRef
    4.Dai X., Fang X., Zhang C., Xu R., Xu B.: Determination of serum uric acid using high-performance liquid chromatography (HPLC)/isotope dilution mass spectrometry (ID-MS) as a candidate reference method. J. Chromatogr. B 857(2), 287–295 (2007). doi:10.​1016/​j.​jchromb.​2007.​07.​035 CrossRef
    5.Zanon N.C.M., Oliveira O.N. Jr, Caseli L.: of uricase enzyme in Langmuir and Langmuir-Blodgett films of fatty acids: Possible use as a uric acid sensor. J. Colloid Interface Sci. 373(1), 69–74 (2012). doi:10.​1016/​j.​jcis.​2011.​07.​095 CrossRef
    6.Georgakopoulos C.D., Lamari F.N., Karathanasopoulou I.N., Gartaganis V.S., Pharmakakis N.M., Karamanos N.K.: Tear analysis of ascorbic acid, uric acid and malondialdehyde with capillary electrophoresis. Biomed. Chromatogr. 24(8), 852–857 (2010)
    7.Lebid M., Omari M.: Synthesis and electrochemical properties of LaFeO3 oxides prepared via Sol–Gel method. Arab. J. Sci. Eng. 39(1), 147–152 (2014). doi:10.​1007/​s13369-013-0883-8 CrossRef
    8.Fattah-alhosseini A.: Modified point defect model for the electrochemical behavior of the passive films formed on alloy C (UNS N10002) in Borax solutions. Arab. J. Sci. Eng. 40(1), 63–67 (2015). doi:10.​1007/​s13369-014-1501-0 CrossRef
    9.Zheng Y., Wang A., Lin H., Fu L., Cai W.: Sensitive electrochemical sensor for direct phoxim detection based on an electrodeposited reduced graphene oxide-gold nanocomposite. RSC Adv. 5(20), 15425–15430 (2015). doi:10.​1039/​C4RA15872E CrossRef
    10.Huang Y., Bu L., Wang W., Qin X., Li Z., Huang Z., Fu Y., Su X., Xie Q., Yao S.: One-pot preparation of uricase–poly(thiophene-3-boronic acid)–Ptnano composites for high-performance amperometric biosensing of uric acid. Sens. Actuators B Chem. 177, 116–123 (2013). doi:10.​1016/​j.​snb.​2012.​10.​101 CrossRef
    11.Yang C.L., Liu H.Y., Xia Q.L., Li Z.H., Xiao Q.Z., Lei G.T.: Effects of SiO2 nanoparticles and diethyl carbonate on the electrochemical properties of a fibrous nanocomposite polymer electrolyte for rechargeable Lithium batteries. Arab. J. Sci. Eng. 39(9), 6711–6720 (2014). doi:10.​1007/​s13369-014-1192-6 CrossRef
    12.Fu L., Zheng Y., Wang A., Cai W., Fu Z., Peng F.: A novel nonenzymatic hydrogen peroxide electrochemical sensor based on SnO2-reduced graphene oxide nanocomposite. Sens. Lett. 13(1), 81–84 (2015). doi:10.​1166/​sl.​2015.​3414 CrossRef
    13.Fu L., Zheng Y., Ren Q., Wang A., Deng B.: Green biosynthesis of SnO2 nanoparticles by plectranthus amboinicus leaf extract their photocatalytic activity toward rhodamine B degradation. J. Ovonic Res. 11(1), 21–26 (2015)
    14.Fu L., Fu Z.: Plectranthus amboinicus leaf extract—assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity. Ceram Int. 41(2, Part A), 2492–2496 (2015). doi:10.​1016/​j.​ceramint.​2014.​10.​069 CrossRef
    15.Fu L., Cai W., Wang A., Zheng Y.: Photocatalytic hydrogenation of nitrobenzene to aniline over tungsten oxide-silver nanowires. Mater. Lett. 142(0), 201–203 (2015). doi:10.​1016/​j.​matlet.​2014.​12.​021 CrossRef
    16.Cao G.S., Wang R., Wang P., Li X., Wang Y., Wang G., Li J.: Electrochemical Co3O4 nanoporous thin films sensor for hydrogen peroxide detection. Nano 09(04), 1450047 (2014). doi:10.​1142/​S179329201450047​7 CrossRef
    17.Erdem A., Karadeniz H., Caliskan A., Vaseashta A.: Electrochemical dna sensor technology for monitoring of drug–dna interactions. Nano 03(04), 229–232 (2008). doi:10.​1142/​S179329200800106​4 CrossRef
    18.Wang A., Ng H.P., Xu Y., Li Y., Zheng Y., Yu J., Han F., Peng F., Fu L.: Gold nanoparticles: synthesis, stability test, and application for the rice growth. J. Nanomater. 2014, 6 (2014)
    19.Fu L., Wang A., Zheng Y., Cai W., Fu Z.: Electrodeposition of Ag dendrites/AgCl hybrid film as a novel photodetector. Mater. Lett. 142(0), 119–121 (2015). doi:10.​1016/​j.​matlet.​2014.​12.​001 CrossRef
    20.Ahmad A., Hussain F., Deen K.M., Ahmad R., Ali L., Kamran M., Azam M.: Corrosion behavior of X-70 pipe steel in crude oil environments depending upon surface characteristics. Arab. J. Sci. Eng. 39(7), 5393–5404 (2014). doi:10.​1007/​s13369-014-1102-y CrossRef
    21.Noor E., Al-Moubaraki A.: Influence of soil moisture content on the corrosion behavior of X60 steel in different soils. Arab. J. Sci. Eng. 39(7), 5421–5435 (2014). doi:10.​1007/​s13369-014-1135-2 CrossRef
    22.Wang A., Fu L., Ng H.P., Cai W., Zheng Y., Han F., Wang Z., Peng F.: Monitoring fluorescence lifetime changes of CdTe QDs synthesized with different stabilizers by Photoluminscence and Zeta potential measurement. J. Non Oxide Glass. 7(1), 1–12 (2015)
    23.Tang L., Wang Y., Li Y., Feng H., Lu J., Li J.: Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 19(17), 2782–2789 (2009). doi:10.​1002/​adfm.​200900377 CrossRef
    24.He L., Fu L., Tang Y.: Catalytic performance of a novel Cr/ZnAlLaO catalyst for oxidative dehydrogenation of isobutane. Catal. Sci. Technol. 5(2), 1115–1125 (2015). doi:10.​1039/​C4CY00990H CrossRef
    25.Fu, L.; Zheng, Y.; Wang, Z.; Wang, A.; Deng, B.; Peng, F.: Facile synthesis of Ag-AgCl/ZnO hybrid with high efficiency photocatalytic property under visible light. Dig. J. Nanomater. Biostructures 10(1), 117–124 (2015)
    26.Nayak P., Santhosh P.N., Ramaprabhu S.: Electrochemical sensor for dopamine based on ZnO decorated graphene nanosheets as the transducer matrix. Graphene 1(1), 25–30 (2013). doi:10.​1166/​graph.​2013.​1009 CrossRef
    27.Jiang L., Gu S., Ding Y., Jiang F., Zhang Z.: Facile and novel electrochemical preparation of a graphene-transition metal oxide nanocomposite for ultrasensitive electrochemical sensing of acetaminophen and phenacetin. Nanoscale 6(1), 207–214 (2014). doi:10.​1039/​c3nr03620k CrossRef
    28.Li B., Liu T., Wang Y., Wang Z.: ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance. J. Colloid Interface Sci. 377(1), 114–121 (2012). doi:10.​1016/​j.​jcis.​2012.​03.​060 CrossRef
    29.Zhang X., Zhang D., Chen Y., Sun X., Ma Y.: Electrochemical reduction of graphene oxide films: Preparation, characterization and their electrochemical properties. Chin. Sci. Bull. 57(23), 3045–3050 (2012). doi:10.​1007/​s11434-012-5256-2 CrossRef
    30.Ahmad M., Ahmed E., Hong Z.L., Khalid N.R., Ahmed W., Elhissi A.: Graphene–Ag/ZnO nanocomposites as high performance photocatalysts under visible light irradiation. J. Alloy Compd. 577, 717–727 (2013). doi:10.​1016/​j.​jallcom.​2013.​06.​137 CrossRef
    31.Oukil D., Benhaddad L., Aitout R., Makhloufi L., Pillier F., Saidani B.: Electrochemical synthesis of polypyrrole films doped by ferrocyanide ions onto iron substrate: Application in the electroanalytical determination of uric acid. Sensors Actuators B Chem. 204, 203–210 (2014). doi:10.​1016/​j.​snb.​2014.​07.​086 CrossRef
    32.Wei Y., Li M., Jiao S., Huang Q., Wang G., Fang B.: Fabrication of CeO2 nanoparticles modified glassy carbon electrode and its application for electrochemical determination of UA and AA simultaneously. Electrochim. Acta 52(3), 766–772 (2006). doi:10.​1016/​j.​electacta.​2006.​06.​006 CrossRef
    33.Laviron E.: Adsorption autoinhibition and autocatalysis in polarography and linear potential sweep voltammetry. J. Electroanal. Chem. 52, 355–393 (1974)CrossRef
    34.Laviron E.: General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 101, 19–28 (1979)CrossRef
    35.Cao X., Xu Y., Luo L., Ding Y., Zhang Y.: Simultaneous determination of uric acid and ascorbic acid at the film of chitosan incorporating cetylpyridine bromide modified glassy carbon electrode. J. Solid State Electrochem. 14(5), 829–834 (2010). doi:10.​1007/​s10008-009-0861-y CrossRef
    36.Manjunatha H., Nagaraju D.H., Suresh G.S., Venkatesha T.V.: Detection of uric acid in the presence of dopamine and high concentration of ascorbic acid using PDDA modified graphite electrode. Electroanalysis 21(20), 2198–2206 (2009). doi:10.​1002/​elan.​200904662 CrossRef
    37.Afrasiabi, M.; Kianipour, S.; Babaei, A.; Nasimi, A.A.; Shabanian, M.: A new sensor based on glassy carbon electrode modified with nanocomposite for simultaneous determination of acetaminophen, ascorbic acid and uric acid. J. Saudi Chem. Soc. (2013). doi: 10.​1016/​j.​jscs.​2013.​02.​002
    38.Zhang H., Zhou Y., Zhang J., Gou L., Zheng J.: Highly selective and sensitive dopamine and uric acid electrochemical sensor fabricated with poly (orotic acid). J. Mol. Liq. 184, 43–50 (2013). doi:10.​1016/​j.​molliq.​2013.​04.​020 CrossRef
    39.Zhou Y., Zhang H., Xie H., Chen B., Zhang L., Zheng X., Jia P.: A novel sensor based on LaPO4 nanowires modified electrode for sensitive simultaneous determination of dopamine and uric acid. Electrochim. Acta 75(0), 360–365 (2012). doi:10.​1016/​j.​electacta.​2012.​05.​023 CrossRef
    40.Sun D., Zhao Q., Tan F., Wang X., Gao J.: Simultaneous detection of dopamine, uric acid, and ascorbic acid using SnO2 nanoparticles/multi-walled carbon nanotubes/carbon paste electrode. Anal. Methods 4(10), 3283 (2012). doi:10.​1039/​c2ay25401h CrossRef
    41.Cui R., Wang X., Zhang G., Wang C.: Simultaneous determination of dopamine, ascorbic acid, and uric acid using helical carbon nanotubes modified electrode. Sens. Actuators B Chem. 161(1), 1139–1143 (2012). doi:10.​1016/​j.​snb.​2011.​11.​040 MathSciNet CrossRef
    42.Liu X., Pan L., Lv T., Sun Z., Sun C.Q.: Visible light photocatalytic degradation of dyes by bismuth oxide-reduced graphene oxide composites prepared via microwave-assisted method. J. Colloid Interface Sci. 408, 145–150 (2013). doi:10.​1016/​j.​jcis.​2013.​07.​045 CrossRef
  • 作者单位:Li Fu (1) (2)
    Yuhong Zheng (1)
    Aiwu Wang (2)
    Wen Cai (2)
    Bo Deng (3)
    Zhi Zhang (3)

    1. Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing, 210014, People’s Republic of China
    2. Department of Physics and Materials Science, City University of Hong Kong, 88 Tat Chee Avenue, Kowloon, Hong Kong
    3. Jiangsu Junma Park Technology Co. LTD, Jiangsu, People’s Republic of China
  • 刊物类别:Engineering
  • 刊物主题:Engineering, general
    Mathematics
    Science, general
  • 出版者:Springer Berlin / Heidelberg
文摘
In this paper, reduced graphene oxide–ZnO (RGO–ZnO) nanorods composite was prepared via a simple one-pot hydrothermal approach. The synthesized RGO–ZnO nanorods composite has been successfully applied for glassy carbon electrode (GCE) surface modification. The RGO–ZnO nanorods composite-modified GCE was applied for sensitive and selective determination of uric acid (UA). The biosensor exhibited a linear dependence on UA concentration ranging from 1 to 800 μM with a detection limit of 0.312 μM(S/N =  3). The proposed UA sensor also showed an excellent stability, reproducibility and anti-interference property.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700