Expression of a potato antimicrobial peptide SN1 increases resistance to take-all pathogen Gaeumannomyces graminis var. tritici in transgenic wheat
详细信息    查看全文
  • 作者:Wei Rong (1) (2)
    Lin Qi (1)
    Jingfen Wang (1)
    Lipu Du (1)
    Huijun Xu (1)
    Aiyun Wang (2)
    Zengyan Zhang (1)
  • 关键词:Potato antimicrobial peptide snakin1 ; Gaeumannomyces graminis var. tritici ; Take ; all ; Triticum aestivum ; Transgenic wheat
  • 刊名:Functional & Integrative Genomics
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:13
  • 期:3
  • 页码:403-409
  • 全文大小:283KB
  • 参考文献:1. Almasia NI, Bazzini AA, Hopp HE, Vazquez-Rovere C (2008) Overexpression of / snakin-1 gene enhances resistance to / Rhizoctonia solani and / Erwinia carotovora in transgenic potato plants. Mol Plant Pathol 9:329鈥?38 CrossRef
    2. Aubert D, Chevillard M, Dorne AM, Arlaud G, Herzog M (1998) Expression patterns of GASA genes in / Arabidopsis thaliana: the GASA4 gene is up-regulated by gibberellins in meristematic regions. Plant Mol Biol 36:871鈥?83 CrossRef
    3. Ben-Nissan G, Lee JY, Borohov A, Weiss D (2004) GIP, a / petunia hybrid GA-induced cysteine-rich protein: a possible role in shoot elongation and transition to flowering. Plant J 37:229鈥?38 CrossRef
    4. Berrocal-Lobo M, Segura A, Moreno M, L贸pez G, Garc铆a-Olmedo F, Molina A (2002) Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol 128:951鈥?61 CrossRef
    5. Bithell SL, Butler RC, Harrow S, McKay A, Cromey MG (2011) Susceptibility to take-all of cereal and grass species, and their effects on pathogen inoculum. Ann Appl Biol 159:252鈥?66 CrossRef
    6. Broekaert WF, Cammue BPA, De Bolle MFC, Thevissen K, De Samblanx GW, Osborn RW (1997) Antimicrobial peptides from plants. Crit Rev Plant Sci 16:297鈥?23
    7. Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213鈥?18 CrossRef
    8. Daval S, Lebreton L, Gazengel K, Boutin M, Guillerm-Erckelboudt AY, Sarniguet A (2011) The biocontrol bacterium / Pseudomonas fluorescens Pf29Arp strain affects the pathogenesis-related gene expression of the take-all fungus / Gaeumannomyces graminis var. / tritici on wheat roots. Mol Plant Pathol 12:839鈥?54 CrossRef
    9. de la Fuente JI, Amaya I, Castillejo C, S谩nchez-Sevilla JF, Quesada MA, Botella MA, Valpuesta V (2006) The strawberry gene FaGAST affects plants growth through inhibition of cell elongation. J Exp Bot 57:2401鈥?411 CrossRef
    10. Furukawa T, Sakaguchi N, Shimada H (2006) Two OsGASR genes, rice GAST homologue genes that are abundant in proliferating tissues, show different expression patterns in developing panicles. Genes Genet Syst 81:171鈥?80 CrossRef
    11. Garc铆a-Olmedo F, Molina A, Alamillo JM, Rodr铆guez-Palenzuela P (1998) Plant defense peptides. Biopolymers 47:479鈥?91 CrossRef
    12. Garc铆a-Olmedo F, Rodr铆guez-Palenzuela P, Molina A, Alamillo JM, L贸pez-Solanilla E, Berrocal-Lobo M, Poza-Carri贸n C (2001) Antibiotic activities of peptides, hydrogen peroxide and peroxynitrte in plant defense. FEBS Lett 498:219鈥?22 CrossRef
    13. Guilleroux M, Osbourn A (2004) Gene expression during infection of wheat roots by the 鈥榯ake-all鈥?fungus / Gaeumannomyces graminis. Mol Plant Pathol 5:203鈥?16 CrossRef
    14. Gutteridge RJ, Bateman GL, Todd AD (2003) Variation in the effects of take-all disease on grain yield and quality of winter cereals in field experiments. Pest Manag Sci 59:215鈥?24 CrossRef
    15. Herzog M, Dorne AM, Grellet F (1995) GASA, a gibberellin-regulated gene family from / Arabidopsis thaliana related to the tomato GAST1 gene. Plant Mol Biol 27:743鈥?52 CrossRef
    16. Kotilainen M, Helariutta Y, Mehto M, Pollanen E, Albert VA, Elomaa P, Teeri TH (1999) GEG participates in the regulation of cell and organ shape during corolla and carpel development in gerbera hybrid. Plant Cell 11:1093鈥?104
    17. Liu BY, Lu Y, Xin ZY, Zhang ZY (2009) Identification and antifungal assay of a wheat 尾-1,3 glucanse. Biotechnol Lett 31:1005鈥?010 CrossRef
    18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-螖螖CT method. Methods 25:402鈥?08 CrossRef
    19. L贸pez-Solanilla E, Gonz谩lez-Zorn B, Novella S, V谩zquez-Boland JA, Rodr铆guez-Palenzuela P (2003) Susceptibility of / Listeria monocytogenes to antimicrobial peptides. FEMS Microbiol Lett 226:101鈥?05 CrossRef
    20. Roxrud I, Lid SE, Fletcher JC, Schmidt ED, Opsahl-Sorteberg HG (2007) GASA4, one of the 14-member / Arabidopsis GASA family of small polypeptides, regulates flowering and seed development. Plant Cell Physiol 48:471鈥?83 CrossRef
    21. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014鈥?019 CrossRef
    22. Sasaki T, Song J, Koga-Ban Y, Matsui E, Fang F, Higo H, Nagasaki H, Hori M, Miya M, Murayama-Kayano E, Takiguchi TY, Ohta I, Miyadera N, Havukkela I, Minobe Y (1994) Toward cataloguing all rice genes: large-scale sequencing of randomly chosen rice cDNAs from a callus cDNA library. Plant J 6:615鈥?24 CrossRef
    23. Segura A, Moreno M, Madue帽o F, Molina A, Garc铆a-Olmedo F (1999) Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant-Microbe Interact 12:16鈥?3 CrossRef
    24. Selitrennikoff CP (2001) Antifungal proteins. Appl Environ Microbiol 67:2883鈥?894 CrossRef
    25. Sharp PJ, Chao S, Desai S, Gale MD (1989) The isolation, characterization and application in the / Triticeae of a set of wheat RFLP probes identifying each homoeologous chromosome arm. Theor Appl Genet 78:342鈥?48 CrossRef
    26. Shi L, Gast RT, Gopalraj M, Olszewski NE (1992) Characterization of a shoot-specific, GA3- and ABA-regulated gene from tomato. Plant J 2:153鈥?59
    27. Xu HJ, Pang JL, Ye XG, Du LP, Li LC, Xin ZY, Ma YZ, Chen JP, Chen J, Chen SH, Wu HY (2001) Study on the gene transferring of / Nib8 into wheat for its resistance to the / Yellow mosaic virus by bombardment. Acta Agron Sin 27:684鈥?89 (in Chinese with English abstract)
    28. Yang MM, Mavrodi DV, Mavrodi OV, Bonsall RF, Parejko JA, Paulitz TC, Thomashow LS, Yang HT, Weller DM, Guo JH (2011) Biological control of take-all by / Pseudomonas fluorescent spp. from Chinese wheat fields. Phytopathology 101:1481鈥?491 CrossRef
  • 作者单位:Wei Rong (1) (2)
    Lin Qi (1)
    Jingfen Wang (1)
    Lipu Du (1)
    Huijun Xu (1)
    Aiyun Wang (2)
    Zengyan Zhang (1)

    1. National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Biology and Genetic Improvement of Triticeae Crops of the Agriculture Ministry, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
    2. Central South University of Forestry and Technology, Changsha, Hunan, 412001, China
文摘
Take-all, caused by soil-borne fungus Gaeumannomyces graminis var. tritici (Ggt), is a devastating root disease of wheat (Triticum aestivum) worldwide. Breeding resistant wheat cultivars is the most promising and reliable approach to protect wheat from take-all. Currently, no resistant wheat germplasm is available to breed cultivars using traditional methods. In this study, gene transformation was carried out using Snakin-1 (SN1) gene isolated from potato (Solanum tuberosum) because the peptide shows broad-spectrum antimicrobial activity in vitro. Purified SN1 peptide also inhibits in vitro the growth of Ggt mycelia. By bombardment-mediated method, the gene SN1 was transformed into Chinese wheat cultivar Yangmai 18 to generate SN1 transgenic wheat lines, which were used to assess the effectiveness of the SN1 peptide in protecting wheat from Ggt. Genomic PCR and Southern blot analyses indicated that the alien gene SN1 was integrated into the genomes of five transgenic wheat lines and heritable from T0 to T4 progeny. Reverse transcription-PCR and Western blot analyses showed that the introduced SN1 gene was transcribed and highly expressed in the five transgenic wheat lines. Following challenging with Ggt, disease test results showed that compared to segregants lacking the transgene and untransformed wheat plants, these five transgenic wheat lines expressing SN1 displayed significantly enhanced resistance to take-all. These results suggest that SN1 may be a potentially transgenic tool for improving the take-all resistance of wheat.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700