Statistical shape model of a liver for autopsy imaging
详细信息    查看全文
  • 作者:Atsushi Saito (1)
    Akinobu Shimizu (1)
    Hidefumi Watanabe (1)
    Seiji Yamamoto (2)
    Shigeru Nawano (3)
    Hidefumi Kobatake (4)
  • 关键词:Statistical shape model ; Liver ; Autopsy imaging ; Synthesized ; based learning ; Level set ; PCA
  • 刊名:International Journal of Computer Assisted Radiology and Surgery
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:9
  • 期:2
  • 页码:269-281
  • 全文大小:1,850 KB
  • 参考文献:1. Ezawa H, Yoneyama R, Kandatsu S (2003) Introduction of autopsy imaging redefines the concept of autopsy: 27 cases of clinical experience. Pathol Int 53:865-73. doi:10.1046/j.1440-1827.2003.01573.x
    2. Ezawa E, Shiotani S, Uchigasaki S (2007) Autopsy imaging in Japan. Rechtsmedizin 17:19-0. doi:10.1007/s00194-006-0409-8
    3. Heimann T, Meinzer HP (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13:543-63. doi:10.1016/j.media.2009.05.004 CrossRef
    4. Kainmüller D, Lange T, Lamecker H (2007) Shape constrained automatic segmentation of the liver based on a heuristic intensity model. In: Proceedings of MICCAI workshop 3D segmentation in the clinic: a grand challenge
    5. Okada T, Shimada R, Hori M, Nakamoto M, Chen YW, Nakamura H, Sato Y (2008) Automated segmentation of the liver from 3D CT images using probabilistic atlas and multilevel statistical shape model. Acad Radiol 15:1390-403. doi:10.1016/j.acra.2008.07.008
    6. Nakagomi K, Shimizu A, Kobatake H, Yakami M, Fujimoto K, Togashi K (2012) Multi-shape graph cuts with neighbor prior constraints and its application to lung segmentation from a chest CT volume. Med Image Anal 17:62-7. doi:10.1016/j.media.2012.08.002
    7. De Bruijne M, Lund MT, Tanko LB, Pettersen PC, Nielsen M (2007) Quantitative vertebral morphometry using neighbor-conditional shape models. Med Image Anal 11:503-12. doi: 10.1016/j.media.2007.07.004
    8. Baka N, De Bruijne M, Reiber JHC, Niessen W, Lelieveldt BPF (2010) Confidence of model based shape reconstruction from sparse data. In: Proceedings of ISBI 1077-080. doi:10.1109/ISBI.2010.5490179
    9. Syrkina E, Blanc R, Székely G (2011) Propagating uncertainties in statistical model based shape prediction. In: Proceedings of SPIE 796240. doi:10.1117/12.877960
    10. Tomoshige S, Oost E, Shimizu A, Watanabe H, Kobatake H, Nawano S (2012) Relaxed conditional statistical shape models and their application to non-contrast liver segmentation. Med Image Anal 7601:126-36. doi:10.1016/j.media.2012.02.001
    11. Tsai A, Wells W, Tempany C, Grimson E, Willsky A (2004) Mutual information in coupled multi-shape model for medical image segmentation. Med Image Anal 8:429-45. doi:10.1016/j.media.2004.01.003
    12. Yang J, Staib LH, Duncan JS (2004) Neighbor-constrained segmentation with level set based 3-d deformable models. IEEE Trans Med Imaging 23:940-48. doi:10.1109/TMI.2004.830802
    13. Pohl KM, Fisher J, Shenton ME, McCarley RW, Grimson WEL, Kikinis R, Wells WM (2006) Logarithm odds maps for shape representation. Proc MICCAI 4191:955-63. doi:10.1007/11866763_117
    14. Malcolm JG, Rathi Y, Shenton ME, Tannenbaum A (2008) Label space: a coupled multi-shape representation. Proc MICCAI 5242:416-24. doi:10.1007/978-3-540-85990-1_50
    15. Changizi N, Hamarneh G (2010) Probabilistic multi-shape representation using an isometric log-ratio mapping. Proc MICCAI 6363:563-70. doi:10.1007/978-3-642-15711-0_70
    16. Okada T, Linguraru MG, Yoshida Y, Hori M, Summers RM, Chen Y, Tomiyama N, Sato Y (2011) Abdominal multi-organ segmentation of CT images based on hierarchical spatial modeling of organ interrelations. 7029:173-80. doi:10.1007/978-3-642-28557-8_22
    17. Linguraru MG, Pura JA, Pamulapati V, Summers RM (2012) Statistical 4D graphs for multi-organ abdominal segmentation from multiphase CT. Med Image Anal 16:904-14. doi:10.1016/j.media.2012.02.001
    18. Murase H, Nayar SK (1996) Learning by a generation approach to appearance-based object recognition. Int Conf Pattern Recognit 1:25-9. doi:10.1109/ICPR.1996.545985
    19. Gavrila DM, Giebel J (2001) Virtual sample generation for template-based shape matching. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 1:676-81. doi:10.1109/CVPR.2001.990540
    20. Ishida H, Takahashi H, Ide I, Mekada Y, Murase H (2007) Generation of training data by degradation models for traffic sign symbol recognition. IEICE Trans Inf Syst E90–D:1134-141. doi:10.1093/ietisy/e90-d.8.1134
    21. Leventon M, Grimson WEL, Faugeras O (2000) Statistical shape influence in geodesic active contours. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 1:316-23. doi:10.1109/CVPR.2000.855835
    22. Uchida Y, Shimizu A, Kobatake H, Nawano S, Shinozaki K (2010) A comparative study of statistical shape models of the pancreas. Int J Comput Assist Radiol Surg 5(suppl 1):S385–S387. doi:10.1007/s11548-010-0469-9
    23. Jeong JY (2009) Estimation of probability distribution on multiple anatomical objects and evaluation of statistical shape models. PhD thesis, Department of Computer Science, University of North Carolina
    24. Styner MA, Rajamani KT, Nolte L-P, Zsemlye G, Székely G, Taylor CJ, Davies RH (2003) Evaluation of 3D correspondence methods for model building. Inf Process Med Imaging 2732:63-5. doi: 10.1007/978-3-540-45087-0_6
    25. Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J Optim 9:112-47. doi:10.1137/S1052623496303470
  • 作者单位:Atsushi Saito (1)
    Akinobu Shimizu (1)
    Hidefumi Watanabe (1)
    Seiji Yamamoto (2)
    Shigeru Nawano (3)
    Hidefumi Kobatake (4)

    1. Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
    2. Ai Information Center, Chuo-ku, Tokyo, Japan
    3. Department of Radiology, International University of Health and Welfare, Mita Hospital, Minato-ku, Tokyo, Japan
    4. Institute of National Colleges of Technology, Hachioji, Tokyo, Japan
  • ISSN:1861-6429
文摘
Purpose ???Modeling the postmortem liver for autopsy imaging is a challenging problem owing to the variation in organ deformation found in cadavers and limited availability of postmortem liver CT scans. An algorithm was developed to construct a statistical shape model (SSM) for the adult postmortem liver in autopsy imaging. Methods ???First, we investigated the relationship between SSMs obtained from in vivo liver CT scans and those from postmortem cases. Liver shapes were embedded in level set functions and statistically modeled using a spatially weighted principal components analysis. The performance of the SSMs was evaluated in terms of generalization and specificity. Several algorithms for the transformation from in vivo livers to postmortem livers were proposed to enhance the performance of an SSM for a postmortem liver, followed by a comparative study on SSMs. Specifically, five SSMs for a postmortem liver were constructed and evaluated using 32 postmortem liver labels, and postmortem liver labels synthesized from 144 in vivo liver labels were constructed using the proposed transformation algorithms. We also compared the proposed SSMs with three conventional SSMs trained from postmortem liver labels and/or in vivo liver labels. Results ???The investigation showed that the performance of an SSM constructed using in vivo liver labels suffered when describing postmortem liver shapes. Two of the five proposed SSMs trained using synthesized postmortem livers showed the best performance with no significant differences between them, and they statistically outperformed all conventional SSMs tested. Conclusions ???The performance of conventional SSMs can be improved by using both postmortem liver shape labels and artificial shape labels synthesized from in vivo liver shape labels.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700